2026屆內(nèi)蒙古赤峰市寧城縣數(shù)學(xué)高二上期末達(dá)標(biāo)檢測試題含解析_第1頁
2026屆內(nèi)蒙古赤峰市寧城縣數(shù)學(xué)高二上期末達(dá)標(biāo)檢測試題含解析_第2頁
2026屆內(nèi)蒙古赤峰市寧城縣數(shù)學(xué)高二上期末達(dá)標(biāo)檢測試題含解析_第3頁
2026屆內(nèi)蒙古赤峰市寧城縣數(shù)學(xué)高二上期末達(dá)標(biāo)檢測試題含解析_第4頁
2026屆內(nèi)蒙古赤峰市寧城縣數(shù)學(xué)高二上期末達(dá)標(biāo)檢測試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2026屆內(nèi)蒙古赤峰市寧城縣數(shù)學(xué)高二上期末達(dá)標(biāo)檢測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知數(shù)列滿足且,則()A.是等差數(shù)列 B.是等比數(shù)列C.是等比數(shù)列 D.是等比數(shù)列2.在平面內(nèi),A,B是兩個定點,C是動點,若,則點C的軌跡為()A.圓 B.橢圓C.拋物線 D.直線3.函數(shù)在區(qū)間上平均變化率等于()A. B.C. D.4.已知,是雙曲線的左右焦點,過的直線與曲線的右支交于兩點,則的周長的最小值為()A. B.C. D.5.動點P,Q分別在拋物線和圓上,則的最小值為()A. B.C. D.6.黃金矩形是寬()與長()的比值為黃金分割比的矩形,如圖所示,把黃金矩形分割成一個正方形和一個黃金矩形,再把矩形分割出正方形.在矩形內(nèi)任取一點,則該點取自正方形內(nèi)的概率是A. B.C. D.7.設(shè)圓:和圓:交于A,B兩點,則線段AB所在直線的方程為()A. B.C. D.8.函數(shù)在和處的導(dǎo)數(shù)的大小關(guān)系是()A. B.C. D.不能確定9.甲、乙兩組數(shù)的數(shù)據(jù)如莖葉圖所示,則甲、乙的平均數(shù)、方差、極差及中位數(shù)中相同的是()A.極差 B.方差C.平均數(shù) D.中位數(shù)10.某制藥廠為了檢驗?zāi)撤N疫苗預(yù)防的作用,把名使用疫苗的人與另外名未使用疫苗的人一年中的記錄作比較,提出假設(shè):“這種疫苗不能起到預(yù)防的作用”,利用列聯(lián)表計算得,經(jīng)查對臨界值表知.則下列結(jié)論中,正確的結(jié)論是()A.若某人未使用該疫苗,則他在一年中有的可能性生病B.這種疫苗預(yù)防的有效率為C.在犯錯誤的概率不超過的前提下認(rèn)為“這種疫苗能起到預(yù)防的作用”D.有的把握認(rèn)為這種疫苗不能起到預(yù)防生病的作用11.已知不等式解集為,下列結(jié)論正確的是()A. B.C. D.12.設(shè)a,b,c非零實數(shù),且,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知在△中,角A,B,C的對邊分別是a,b,c,若△的面積為2,邊上中線的長為.且,則△外接圓的面積為___________14.設(shè)函數(shù),,若存在,成立,則實數(shù)的取值范圍為__________.15.在等差數(shù)列中,,公差,則_________16.命題“若實數(shù)a,b滿足,則且”是_______命題(填“真”或“假”).三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知集合,,.(1)求;(2)若“”是“”的必要不充分條件,求實數(shù)a的取值范圍.18.(12分)已知橢圓:的一個焦點與曲線的焦點重合,且離心率為.(1)求橢圓的方程(2)設(shè)直線:交橢圓于M,N兩點.①若且的面積為,求的值.②若軸上的任意一點到直線與直線(為橢圓的右焦點)的距離相等,求證:直線恒過定點,并求出該定點坐標(biāo)19.(12分)如圖,四棱錐中,底面為正方形,底面,,點,,分別為,,的中點,平面棱(1)試確定的值,并證明你的結(jié)論;(2)求平面與平面夾角的余弦值20.(12分)在△中,角A,B,C的對邊分別為a,b,c,已知,,.(1)求的大小及△的面積;(2)求的值.21.(12分)已知直線與拋物線交于兩點(1)若,直線過拋物線的焦點,線段中點的縱坐標(biāo)為2,求的長;(2)若交于,求的值22.(10分)如圖,四棱錐中,底面ABCD是邊長為2的菱形,,,且,E為PD的中點(1)求證:;(2)求二面角的大?。唬?)在側(cè)棱PC上是否存在點F,使得點F到平面AEC的距離為?若存在,求出的值;若不存在,請說明理由

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】由,化簡得,結(jié)合等比數(shù)列、等差數(shù)列的定義可求解.【詳解】由,可得,所以,又由,,所以是首項為,公比為2的等比數(shù)列,所以,,,,所以不是等差數(shù)列;不等于常數(shù),所以不是等比數(shù)列.故選:D.2、A【解析】首先建立平面直角坐標(biāo)系,然后結(jié)合數(shù)量積定義求解其軌跡方程即可.【詳解】設(shè),以AB中點為坐標(biāo)原點建立如圖所示的平面直角坐標(biāo)系,則:,設(shè),可得:,從而:,結(jié)合題意可得:,整理可得:,即點C的軌跡是以AB中點為圓心,為半徑的圓.故選:A.【點睛】本題主要考查平面向量及其數(shù)量積的坐標(biāo)運算,軌跡方程的求解等知識,意在考查學(xué)生的轉(zhuǎn)化能力和計算求解能力.3、C【解析】根據(jù)平均變化率的定義算出答案即可.【詳解】函數(shù)在區(qū)間上的平均變化率等于故選:C4、C【解析】根據(jù)雙曲線的定義和性質(zhì),當(dāng)弦垂直于軸時,即可求出三角形的周長的最小值.【詳解】由雙曲線可知:的周長為.當(dāng)軸時,周長最小值為故選:C5、B【解析】設(shè),根據(jù)兩點間距離公式,先求得P到圓心的最小距離,根據(jù)圓的幾何性質(zhì),即可得答案.【詳解】設(shè),圓化簡為,即圓心為(0,4),半徑為,所以點P到圓心的距離,令,則,令,,為開口向上,對稱軸為的拋物線,所以的最小值為,所以,所以的最小值為.故選:B6、C【解析】設(shè)矩形的長,寬分別為,所以,把黃金矩形分割成一個正方形和一個黃金矩形,所以,設(shè)矩形的面積為,正方形的面積為,設(shè)在矩形內(nèi)任取一點,則該點取自正方形內(nèi)的概率是,則,故本題選C.【詳解】本題考查了幾何概型,考查了運算能力.7、A【解析】將兩圓的方程相減,即可求兩圓相交弦所在直線的方程.【詳解】設(shè),因為圓:①和圓:②交于A,B兩點所以由①-②得:,即,故坐標(biāo)滿足方程,又過AB的直線唯一確定,即直線的方程為.故選:A8、A【解析】求出函數(shù)導(dǎo)數(shù)即可比較.【詳解】,,所以,即.故選:A.9、C【解析】根據(jù)莖葉圖中數(shù)據(jù)的波動情況,可直接判斷方差不同;根據(jù)莖葉圖中的數(shù)據(jù),分別計算極差、中位數(shù)、平均數(shù),即可得出結(jié)果.【詳解】由莖葉圖可得:甲的數(shù)據(jù)更集中,乙的數(shù)據(jù)較分散,所以甲與乙的方差不同;甲的極差為;乙的極差為,所以甲與乙的極差不同;甲的中位數(shù)為,乙的中位數(shù)為,所以中位數(shù)不同;甲的平均數(shù)為,乙的平均數(shù)為,所以甲、乙的平均數(shù)相同;故選:C.10、C【解析】根據(jù)的值與臨界值的大小關(guān)系進行判斷.【詳解】∵,,∴在犯錯誤的概率不超過的前提下認(rèn)為“這種疫苗能起到預(yù)防的作用”,C對,由已知數(shù)據(jù)不能確定若某人未使用該疫苗,則他在一年中有的可能性生病,A錯,由已知數(shù)據(jù)不能判斷這種疫苗預(yù)防的有效率為,B錯,由已知數(shù)據(jù)沒有的把握認(rèn)為這種疫苗不能起到預(yù)防生病的作用,D錯,故選:C.11、C【解析】根據(jù)不等式解集為,得方程的解為或,且,利用韋達(dá)定理即可將用表示,即可判斷各選項的正誤.【詳解】解:因為不等式解集為,所以方程的解為或,且,所以,所以,所以,故ABD錯誤;,故C正確.故選:C.12、C【解析】對于A、B、D:取特殊值否定結(jié)論;對于C:利用作差法證明.【詳解】對于A:取符合已知條件,但是不成立.故A錯誤;對于B:取符合已知條件,但是,所以不成立.故B錯誤;對于C:因為,所以.故C正確;對于D:取符合已知條件,但是,所以不成立.故D錯誤;故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、或【解析】由已知,結(jié)合正弦定理邊角關(guān)系及三角形內(nèi)角的性質(zhì)可得,再根據(jù)三角形面積公式、余弦定理列方程求邊長b、c,應(yīng)用余弦定理求邊長a,根據(jù)正弦定理求外接圓半徑,再用圓的面積公式求面積.【詳解】由題設(shè)及正弦定理邊角關(guān)系有,又,∴,∴,∴.又,∴,即又據(jù)題意,得,且,∴或,故或,∴△外接圓的半徑或,∴△外接圓的面積為或故答案為:或14、【解析】由不等式分離參數(shù),令,則求即可【詳解】由,得,令,則當(dāng)時,;當(dāng)時,;所以在上單調(diào)遞減,在上單調(diào)遞增,故由于存在,成立,則故答案為:15、15【解析】由等差數(shù)列通項公式直接可得.【詳解】.故答案為:1516、假【解析】列舉特殊值,判斷真假命題.【詳解】當(dāng)時,,所以,命題“若實數(shù)a,b滿足,則且”是假命題.故答案為:假三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1).(2).【解析】分析:(1)先求出A,B集合的解集,A集合求定義,B集合解不等式即可,然后由交集定義即可得結(jié)論;(2)若“”是“”的必要不充分條件,說明且,然后根據(jù)集合關(guān)系求解.詳解:(1),.則(2),因為“”是“”的必要不充分條件,所以且.由,得,解得.經(jīng)檢驗,當(dāng)時,成立,故實數(shù)的取值范圍是.點睛:考查定義域,解不等式,交集的定義以及必要不充分條件,正確求解集合,縷清集合間的基本關(guān)系是解題關(guān)鍵,屬于基礎(chǔ)題.18、(1)(2)①;②證明見解析,定點的坐標(biāo)為【解析】(1)由所給條件確定基本量即可.(2)①代入消元,韋達(dá)定理整體思想,列出關(guān)于的方程從而得解;②由已知可知,得到關(guān)于、的一次關(guān)系式可得證.【小問1詳解】由已知橢圓的右焦點坐標(biāo)為,,所以,橢圓的方程:【小問2詳解】①將與橢圓方程聯(lián)立得.設(shè),,則,解得,∴,,點到直線的距離為,∴,解得(舍去負(fù)值),∴.②設(shè),,將與橢圓方程聯(lián)立,得,當(dāng)時,∴,,,若軸上任意一點到直線與的距離均相等,則軸為直線與的夾角的平分線,∴,即,∴.∴,解得.∴.∴直線恒過一定點,該定點的坐標(biāo)為.19、(1),證明見解析(2)【解析】(1),利用線面平行的判定和性質(zhì)可得答案;(2)以為原點,所在直線分別為的正方向建立空間直角坐標(biāo)系,求出平面的法向量和平面的法向量由向量夾角公式可得答案.【小問1詳解】.證明如下:在△中,因為點分別為的中點,所以//.又平面,平面,所以//平面.因為平面,平面平面,所以//所以//.在△中,因為點為的中點,所以點為的中點,即.【小問2詳解】因為底面為正方形,所以.因為底面,所以,.如圖,建立空間直角坐標(biāo)系,則,,,因為分別為的中點,所以.所以,.設(shè)平面的法向量,則即令,于.又因為平面的法向量為,所以所以平面與平面夾角的余弦值為.20、(1),△的面積為;(2).【解析】(1)應(yīng)用余弦定理求的大小,由三角形面積公式求△的面積;(2)由(1)及正弦定理的邊角關(guān)系可得,即可求目標(biāo)式的值.【小問1詳解】在△中,由余弦定理得:,又,則.所以△的面積為.【小問2詳解】由(1)得:,由正弦定理得:,則,所以.21、(1)6(2)2【解析】(1)通過作輔助線,利用拋物線定義,結(jié)合梯形的中位線定理,可求得答案;(2)根據(jù)題意可求得直線AB的方程為y=x+4,聯(lián)立拋物線方程,得到根與系數(shù)的關(guān)系,由OA⊥OB,得,根據(jù)數(shù)量積的計算即可得答案.【小問1詳解】取AB的中點為E,當(dāng)p=2時,拋物線為C:x2=4y,焦點F坐標(biāo)為F(0,1),過A,E,B分別作準(zhǔn)線y=-1的垂線,重足分別為I,H,G,在梯形ABGI中(圖1),E是AB中點,則2EH=AI+BG,EH=2-(-1)=3,因為AB=AF+BF=AI+BG,所以AB=2EH=6.【小問2詳解】設(shè),由OD⊥AB交AB于D(-2,2),(圖2),得kOD=-1,kAB=1,則直線AB的方程為y=x+4,由得,所以,由,得,即,即,可得,即,所以p=2.22、(1)證明見解析(2)(3)存在;【解析】(1)作出輔助線,證明線面垂直,進而證明線線垂直;(2)建立空間直角坐標(biāo)系,用空間向量求解二面角;(3)設(shè)出F點坐標(biāo),用空間向量的點到平面

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論