版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
西藏日喀則區(qū)南木林高級中學2026屆數(shù)學高二上期末質(zhì)量跟蹤監(jiān)視模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.從編號分別為,,,,的五個大小完全相同的小球中,隨機取出三個小球,則恰有兩個小球編號相鄰的概率為()A. B.C. D.2.已知直線l的方向向量,平面α的一個法向量為,則直線l與平面α的位置關系是()A.平行 B.垂直C.在平面內(nèi) D.平行或在平面內(nèi)3.等差數(shù)列中,,,則()A.6 B.7C.8 D.94.已知等差數(shù)列的前n項和為Sn,首項a1=1,若,則公差d的取值范圍為()A. B.C. D.5.雙曲線的漸近線方程為()A. B.C. D.6.已知過點的直線與圓相切,且與直線平行,則()A.2 B.1C. D.7.拋物線y2=4x的焦點坐標是A.(0,2) B.(0,1)C.(2,0) D.(1,0)8.若1,m,9三個數(shù)成等比數(shù)列,則圓錐曲線的離心率是()A.或 B.或2C.或 D.或29.在中,角A,B,C的對邊分別為a,b,c,若,且,則為()A.等腰三角形 B.直角三角形C.銳角三角形 D.鈍角三角形10.已知是偶函數(shù)的導函數(shù),.若時,,則使得不等式成立的的取值范圍是()A. B.C. D.11.函數(shù)的單調(diào)遞增區(qū)間為()A. B.C. D.12.函數(shù)在點處的切線方程的斜率是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設,則曲線在點處的切線的傾斜角是_______14.計算:________15.函數(shù)的導數(shù)_________________.16.若,則___三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列是公比為正數(shù)的等比數(shù)列,且,.(1)求數(shù)列的通項公式;(2)若,求數(shù)列的前項和.18.(12分)在四棱錐中,平面,,,,,分別是的中點.(1)求證:平面;(2)求證:平面;(3)求直線與平面所成角的正弦值.19.(12分)已知數(shù)列滿足(1)證明:數(shù)列為等差數(shù)列,并求數(shù)列的通項公式;(2)設,求數(shù)列的前n項和20.(12分)已知中,分別為角的對邊,且(1)求;(2)若為邊的中點,,求的面積21.(12分)“中山橋”是位于蘭州市中心,橫跨黃河之上的一座百年老橋,如圖①,橋上有五個拱形橋架緊密相連,每個橋架的內(nèi)部有一個水平橫梁和八個與橫梁垂直的立柱,氣勢宏偉,素有“天下黃河第一橋”之稱.如圖②,一個拱形橋架可以近似看作是由等腰梯形和其上方的拋物線(部分)組成,建立如圖所示的平面直角坐標系,已知,,,,立柱.(1)求立柱及橫梁的長;(2)求拋物線的方程和橋梁的拱高.22.(10分)如圖1,在邊長為4的等邊三角形ABC中,D,E,F(xiàn)分別是AB,AC,BC的中點,沿DE把折起,得到如圖2所示的四棱錐.(1)證明:平面.(2)若二面角的大小為60°,求平面與平面的夾角的大小.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】利用古典概型計算公式計算即可【詳解】從編號分別為,,,,的五個大小完全相同的小球中,隨機取出三個小球共有種不同的取法,恰好有兩個小球編號相鄰的有:,共有6種所以概率為故選:C2、D【解析】根據(jù)題意,結(jié)合線面位置關系的向量判斷方法,即可求解.【詳解】根據(jù)題意,因為,所以,所以直線l與平面α的位置關系是平行或在平面內(nèi)故選:D3、C【解析】由等差數(shù)列的基本量法先求得公差,然后可得【詳解】設數(shù)列的公差為,則,,所以故選:C4、A【解析】該等差數(shù)列有最大值,可分析得,據(jù)此可求解.【詳解】,故,故有故d取值范圍為.故選:A5、A【解析】直接求出,,進而求出漸近線方程.【詳解】中,,,所以漸近線方程為,故.故選:A6、C【解析】先根據(jù)垂直關系設切線方程,再根據(jù)圓心到切線距離等于半徑列式解得結(jié)果.【詳解】因為切線與直線平行,所以切線方程可設為因為切線過點P(2,2),所以因為與圓相切,所以故選:C7、D【解析】的焦點坐標為,故選D.【考點】拋物線的性質(zhì)【名師點睛】本題考查拋物線的定義.解析幾何是中學數(shù)學的一個重要分支,圓錐曲線是解析幾何的重要內(nèi)容,它們的定義、標準方程、簡單幾何性質(zhì)是我們要重點掌握的內(nèi)容,一定要熟記掌握8、D【解析】運用等比數(shù)列的性質(zhì)可得,再討論,,求出曲線的,,由離心率公式計算即可得到【詳解】三個數(shù)1,,9成等比數(shù)列,則,解得,,當時,曲線為橢圓,則;當時,曲線為為雙曲線,則離心率故選:9、B【解析】由余弦定理可得,再利用可得答案.【詳解】因為,所以,由余弦定理,因為,所以,又,∴,故為直角三角形.故選:B.10、C【解析】構造函數(shù),分析函數(shù)在上的單調(diào)性,將所求不等式變形為,可得出關于的不等式,即可得解.【詳解】構造函數(shù),其中,則,所以,函數(shù)為上的奇函數(shù),當時,,且不恒為零,所以,函數(shù)在上為增函數(shù),且該函數(shù)在上也為增函數(shù),故函數(shù)在上為增函數(shù),因為,則,由得,可得,解得故選:C.11、B【解析】求出函數(shù)的定義域,解不等式可得出函數(shù)的單調(diào)遞增區(qū)間.【詳解】函數(shù)的定義域為,由,可得.因此,函數(shù)的單調(diào)遞增區(qū)間為.故選:B.12、D【解析】求解導函數(shù),再由導數(shù)的幾何意義得切線的斜率.【詳解】求導得,由導數(shù)的幾何意義得,所以函數(shù)在處切線的斜率為.故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用導數(shù)的定義,化簡整理,可得,根據(jù)導數(shù)的幾何意義,即可求得答案.【詳解】因為=,所以,則曲線在點處的切線斜率為,即,又所以所求切線的傾斜角為故答案為:14、【解析】根據(jù)無窮等比數(shù)列的求和公式直接即可求出答案.【詳解】.故答案為:.15、.【解析】根據(jù)初等函數(shù)的導數(shù)法則和導數(shù)的四則運算法則,準確運算,即可求解.【詳解】由題意,函數(shù),可得.故答案為:.16、##0.5【解析】導數(shù)的定義公式的變形應用,要求分子分母的變化量相同.【詳解】故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)根據(jù)題意,通過解方程求出公比,即可求解;(2)根據(jù)題意,求出,結(jié)合組合法求和,即可求解.小問1詳解】根據(jù)題意,設公比為,且,∵,,∴,解得或(舍),∴.【小問2詳解】根據(jù)題意,得,故,因此.18、(1)證明見解析;(2)證明見解析;(3).【解析】(1)根據(jù)給定條件證得即可推理作答.(2)由已知條件,以點A作原點建立空間直角坐標系,借助空間位置關系的向量證明即可作答.(3)利用(2)中信息,借助空間向量求直線與平面所成角的正弦值.【小問1詳解】在四棱錐中,因分別是的中點,則,因平面,平面,所以平面.【小問2詳解】在四棱錐中,平面,,以點A為原點,射線AB,AD,AP分別為x,y,z軸非負半軸建立空間直角坐標系,如圖,則,而且,則,,設平面的法向量,由,令,得,又,因此有,所以平面.【小問3詳解】由(2)知,,令直線與平面所成角為,則有,所以直線與平面所成角的正弦值.19、(1)證明見解析,;(2).【解析】(1)由得是公差為2的等差數(shù)列,再由可得答案.(2),分為奇數(shù)、偶數(shù),分組求和即可求解.【小問1詳解】由,得,故是公差為2的等差數(shù)列,故,由,故,于是.【小問2詳解】依題意,,當為偶數(shù)時,故,當為奇數(shù)時,,綜上,.20、(1);(2)【解析】(1)利用正弦定理化邊為角可得,化簡可得,結(jié)合,即得解;(2)在中,由余弦定理得,可得,利用面積公式即得解【詳解】(1)中由正弦定理及條件,可得,∵,,∴,∵,∴,或,又∵,∴,∴,,∴(2)為邊的中點,,,得,中,由余弦定理得,∴,∴,∵,∴,21、(1),(2),【解析】(1)根據(jù)梯形的幾何性質(zhì),即可求解;(2)表示出M,N的坐標,代入拋物線方程中,結(jié)合條件解得p值,繼而求得拱高.【小問1詳解】由題意,知,因為ABFM是等腰梯形,由對稱性知:,所以,【小問2詳解】由(1)知,所以點M的橫坐標為-18,則N的橫坐標為-(18-5)=-13.設點M,N的縱坐標分別為y1,y2,由圖形,知設拋物線的方程為,,兩式相減,得2p(y2-y1)=182-132=155,解得:2p=100故拋物線的方程為x2=-100y.因此,當x=-18時,所以橋梁的拱高OH=3.24+4=7.24m.22、(1)證明見解析;(2).【解析】(1)由結(jié)合線面平行的判定即可推理作答.(2)取DE的中點M,連接,F(xiàn)M,證明平面平面,再建立空間直角坐標系,借助空間向量推理、計算作答.【小問1詳解】在中,因為E,F(xiàn)分別是AC,BC的中點,所以,則圖2中,,而平面,平面,所以平面.【小問2詳解】依題意,是正三角形,四邊形是菱形,取DE的中點M,連接,F(xiàn)M,如圖,則,,即是二面角的平面角,,取中點N,連接,則有,在中,由余弦定理得:,于是有,,即,而,,,平面,則平面,又平面,從而有平面平面,因平面平面,平面,因此,平面,過點N作,則兩兩垂直,以點N為原點,射線分別為x,y,z軸非
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 景觀軸線施工方案(3篇)
- 地鐵地板施工方案(3篇)
- 施工現(xiàn)場施工防突發(fā)公共衛(wèi)生事件制度
- 教職工薪酬福利管理制度
- 罕見腫瘤的個體化治療長期生存數(shù)據(jù)分析與策略優(yōu)化
- 2026廣西南寧市良慶區(qū)總工會招聘1人備考題庫及參考答案詳解1套
- 2026北京經(jīng)濟技術開發(fā)區(qū)衛(wèi)生健康領域事業(yè)單位招聘28人備考題庫完整答案詳解
- 2026云南曲靖市宣威市發(fā)展和改革局招聘編制外工作人員5人備考題庫及1套完整答案詳解
- 2026中央廣播電視總臺招聘備考題庫帶答案詳解
- 保障房財務制度
- 2025年證券市場交易操作與規(guī)范指南
- 2025-2026學年北京市西城區(qū)高三(上期)期末考試生物試卷(含答案)
- 2026廣西北部灣大學公開招聘高層次人才76人筆試參考題庫及答案解析
- 2026屆湖北省襄陽第四中學數(shù)學高一上期末考試模擬試題含解析
- 2025年時事政治必考試題庫完整參考答案及參考答案詳解
- 2026年安徽糧食工程職業(yè)學院單招綜合素質(zhì)考試題庫含答案詳解
- 混凝土施工作業(yè)環(huán)境管理方案
- 2025貴州黔西南州安龍縣選聘城市社區(qū)工作者工作61人備考題庫完整答案詳解
- 工廠裝修吊頂施工實施方案
- 墓碑銷售合同范本
- T-CRHA 089-2024 成人床旁心電監(jiān)測護理規(guī)程
評論
0/150
提交評論