2026屆金陵中學數學高三第一學期期末質量檢測模擬試題含解析_第1頁
2026屆金陵中學數學高三第一學期期末質量檢測模擬試題含解析_第2頁
2026屆金陵中學數學高三第一學期期末質量檢測模擬試題含解析_第3頁
2026屆金陵中學數學高三第一學期期末質量檢測模擬試題含解析_第4頁
2026屆金陵中學數學高三第一學期期末質量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2026屆金陵中學數學高三第一學期期末質量檢測模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知橢圓的左、右焦點分別為、,過點的直線與橢圓交于、兩點.若的內切圓與線段在其中點處相切,與相切于點,則橢圓的離心率為()A. B. C. D.2.盒中裝有形狀、大小完全相同的5張“刮刮卡”,其中只有2張“刮刮卡”有獎,現甲從盒中隨機取出2張,則至少有一張有獎的概率為()A. B. C. D.3.已知雙曲線的右焦點為為坐標原點,以為直徑的圓與雙曲線的一條漸近線交于點及點,則雙曲線的方程為()A. B. C. D.4.甲乙丙丁四人中,甲說:我年紀最大,乙說:我年紀最大,丙說:乙年紀最大,丁說:我不是年紀最大的,若這四人中只有一個人說的是真話,則年紀最大的是()A.甲 B.乙 C.丙 D.丁5.已知三棱錐的四個頂點都在球的球面上,平面,是邊長為的等邊三角形,若球的表面積為,則直線與平面所成角的正切值為()A. B. C. D.6.若點(2,k)到直線5x-12y+6=0的距離是4,則k的值是()A.1 B.-3 C.1或 D.-3或7.如圖,在中,點是的中點,過點的直線分別交直線,于不同的兩點,若,,則()A.1 B. C.2 D.38.已知函數若關于的方程有六個不相等的實數根,則實數的取值范圍為()A. B. C. D.9.如圖,平面ABCD,ABCD為正方形,且,E,F分別是線段PA,CD的中點,則異面直線EF與BD所成角的余弦值為()A. B. C. D.10.直三棱柱中,,,則直線與所成的角的余弦值為()A. B. C. D.11.已知函數,若時,恒成立,則實數的值為()A. B. C. D.12.設復數滿足(為虛數單位),則在復平面內對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空題:本題共4小題,每小題5分,共20分。13.已知橢圓的下頂點為,若直線與橢圓交于不同的兩點、,則當_____時,外心的橫坐標最大.14.如圖,在平面四邊形ABCD中,|AC|=3,|BD|=4,則(AB15.函數在處的切線方程是____________.16.近年來,新能源汽車技術不斷推陳出新,新產品不斷涌現,在汽車市場上影響力不斷增大.動力蓄電池技術作為新能源汽車的核心技術,它的不斷成熟也是推動新能源汽車發(fā)展的主要動力.假定現在市售的某款新能源汽車上,車載動力蓄電池充放電循環(huán)次數達到2000次的概率為85%,充放電循環(huán)次數達到2500次的概率為35%.若某用戶的自用新能源汽車已經經過了2000次充電,那么他的車能夠充電2500次的概率為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)中的內角,,的對邊分別是,,,若,.(1)求;(2)若,點為邊上一點,且,求的面積.18.(12分)在直角坐標系中,直線的參數方程為(為參數).以坐標原點為極點,軸正半軸為極軸建立極坐標系,圓的極坐標方程為.(1)求直線和圓的普通方程;(2)已知直線上一點,若直線與圓交于不同兩點,求的取值范圍.19.(12分)已知函數,曲線在點處的切線方程為求a,b的值;證明:.20.(12分)如圖,在直棱柱中,底面為菱形,,,與相交于點,與相交于點.(1)求證:平面;(2)求直線與平面所成的角的正弦值.21.(12分)某學生為了測試煤氣灶燒水如何節(jié)省煤氣的問題設計了一個實驗,并獲得了煤氣開關旋鈕旋轉的弧度數x與燒開一壺水所用時間y的一組數據,且作了一定的數據處理(如表),得到了散點圖(如圖).表中,.(1)根據散點圖判斷,與哪一個更適宜作燒水時間y關于開關旋鈕旋轉的弧度數x的回歸方程類型?(不必說明理由)(2)根據判斷結果和表中數據,建立y關于x的回歸方程;(3)若旋轉的弧度數x與單位時間內煤氣輸出量t成正比,那么x為多少時,燒開一壺水最省煤氣?附:對于一組數據,,,…,,其回歸直線的斜率和截距的最小二乘估計分別為,.22.(10分)如圖,在中,角的對邊分別為,且滿足,線段的中點為.(Ⅰ)求角的大??;(Ⅱ)已知,求的大小.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

可設的內切圓的圓心為,設,,可得,由切線的性質:切線長相等推得,解得、,并設,求得的值,推得為等邊三角形,由焦距為三角形的高,結合離心率公式可得所求值.【詳解】可設的內切圓的圓心為,為切點,且為中點,,設,,則,且有,解得,,設,,設圓切于點,則,,由,解得,,,所以為等邊三角形,所以,,解得.因此,該橢圓的離心率為.故選:D.【點睛】本題考查橢圓的定義和性質,注意運用三角形的內心性質和等邊三角形的性質,切線的性質,考查化簡運算能力,屬于中檔題.2、C【解析】

先計算出總的基本事件的個數,再計算出兩張都沒獲獎的個數,根據古典概型的概率,求出兩張都沒有獎的概率,由對立事件的概率關系,即可求解.【詳解】從5張“刮刮卡”中隨機取出2張,共有種情況,2張均沒有獎的情況有(種),故所求概率為.故選:C.【點睛】本題考查古典概型的概率、對立事件的概率關系,意在考查數學建模、數學計算能力,屬于基礎題.3、C【解析】

根據雙曲線方程求出漸近線方程:,再將點代入可得,連接,根據圓的性質可得,從而可求出,再由即可求解.【詳解】由雙曲線,則漸近線方程:,,連接,則,解得,所以,解得.故雙曲線方程為.故選:C【點睛】本題考查了雙曲線的幾何性質,需掌握雙曲線的漸近線求法,屬于中檔題.4、C【解析】

分別假設甲乙丙丁說的是真話,結合其他人的說法,看是否只有一個說的是真話,即可求得年紀最大者,即可求得答案.【詳解】①假設甲說的是真話,則年紀最大的是甲,那么乙說謊,丙也說謊,而丁說的是真話,而已知只有一個人說的是真話,故甲說的不是真話,年紀最大的不是甲;②假設乙說的是真話,則年紀最大的是乙,那么甲說謊,丙說真話,丁也說真話,而已知只有一個人說的是真話,故乙說謊,年紀最大的也不是乙;③假設丙說的是真話,則年紀最大的是乙,所以乙說真話,甲說謊,丁說的是真話,而已知只有一個人說的是真話,故丙在說謊,年紀最大的也不是乙;④假設丁說的是真話,則年紀最大的不是丁,而已知只有一個人說的是真話,那么甲也說謊,說明甲也不是年紀最大的,同時乙也說謊,說明乙也不是年紀最大的,年紀最大的只有一人,所以只有丙才是年紀最大的,故假設成立,年紀最大的是丙.綜上所述,年紀最大的是丙故選:C.【點睛】本題考查合情推理,解題時可從一種情形出發(fā),推理出矛盾的結論,說明這種情形不會發(fā)生,考查了分析能力和推理能力,屬于中檔題.5、C【解析】

設為中點,先證明平面,得出為所求角,利用勾股定理計算,得出結論.【詳解】設分別是的中點平面是等邊三角形又平面為與平面所成的角是邊長為的等邊三角形,且為所在截面圓的圓心球的表面積為球的半徑平面本題正確選項:【點睛】本題考查了棱錐與外接球的位置關系問題,關鍵是能夠通過垂直關系得到直線與平面所求角,再利用球心位置來求解出線段長,屬于中檔題.6、D【解析】

由題得,解方程即得k的值.【詳解】由題得,解方程即得k=-3或.故答案為:D【點睛】(1)本題主要考查點到直線的距離公式,意在考查學生對該知識的掌握水平和計算推理能力.(2)點到直線的距離.7、C【解析】

連接AO,因為O為BC中點,可由平行四邊形法則得,再將其用,表示.由M、O、N三點共線可知,其表達式中的系數和,即可求出的值.【詳解】連接AO,由O為BC中點可得,,、、三點共線,,.故選:C.【點睛】本題考查了向量的線性運算,由三點共線求參數的問題,熟記向量的共線定理是關鍵.屬于基礎題.8、B【解析】

令,則,由圖象分析可知在上有兩個不同的根,再利用一元二次方程根的分布即可解決.【詳解】令,則,如圖與頂多只有3個不同交點,要使關于的方程有六個不相等的實數根,則有兩個不同的根,設由根的分布可知,,解得.故選:B.【點睛】本題考查復合方程根的個數問題,涉及到一元二次方程根的分布,考查學生轉化與化歸和數形結合的思想,是一道中檔題.9、C【解析】

分別以AB,AD,AP所在直線為x軸,y軸,軸,建立如圖所示的空間直角坐標系,再利用向量法求異面直線EF與BD所成角的余弦值.【詳解】由題可知,分別以AB,AD,AP所在直線為x軸,y軸,軸,建立如圖所示的空間直角坐標系.設.則.故異面直線EF與BD所成角的余弦值為.故選:C【點睛】本題主要考查空間向量和異面直線所成的角的向量求法,意在考查學生對這些知識的理解掌握水平.10、A【解析】

設,延長至,使得,連,可證,得到(或補角)為所求的角,分別求出,解即可.【詳解】設,延長至,使得,連,在直三棱柱中,,,四邊形為平行四邊形,,(或補角)為直線與所成的角,在中,,在中,,在中,,在中,,在中,.

故選:A.【點睛】本題考查異面直線所成的角,要注意幾何法求空間角的步驟“做”“證”“算”缺一不可,屬于中檔題.11、D【解析】

通過分析函數與的圖象,得到兩函數必須有相同的零點,解方程組即得解.【詳解】如圖所示,函數與的圖象,因為時,恒成立,于是兩函數必須有相同的零點,所以,解得.故選:D【點睛】本題主要考查函數的圖象的綜合應用和函數的零點問題,考查不等式的恒成立問題,意在考查學生對這些知識的理解掌握水平.12、A【解析】

由復數的除法運算可整理得到,由此得到對應的點的坐標,從而確定所處象限.【詳解】由得:,對應的點的坐標為,位于第一象限.故選:.【點睛】本題考查復數對應的點所在象限的求解,涉及到復數的除法運算,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

由已知可得、的坐標,求得的垂直平分線方程,聯立已知直線方程與橢圓方程,求得的垂直平分線方程,兩垂直平分線方程聯立求得外心的橫坐標,再由導數求最值.【詳解】如圖,由已知條件可知,不妨設,則外心在的垂直平分線上,即在直線,也就是在直線上,聯立,得或,的中點坐標為,則的垂直平分線方程為,把代入上式,得,令,則,由,得(舍)或.當時,,當時,.當時,函數取極大值,亦為最大值.故答案為:.【點睛】本題考查直線與橢圓位置關系的應用,訓練了利用導數求最值,是中等題.14、-7【解析】

由題意得AB+【詳解】由題意得ABBC+∴AB+【點睛】突破本題的關鍵是抓住題中所給圖形的特點,利用平面向量基本定理和向量的加減運算,將所給向量統一用AC,15、【解析】

求出和的值,利用點斜式可得出所求切線的方程.【詳解】,則,,.因此,函數在處的切線方程是,即.故答案為:.【點睛】本題考查利用導數求函數的切線方程,考查計算能力,屬于基礎題.16、【解析】

記“某用戶的自用新能源汽車已經經過了2000次充電”為事件A,“他的車能夠充電2500次”為事件B,即求條件概率:,由條件概率公式即得解.【詳解】記“某用戶的自用新能源汽車已經經過了2000次充電”為事件A,“他的車能夠充電2500次”為事件B,即求條件概率:故答案為:【點睛】本題考查了條件概率的應用,考查了學生概念理解,數學應用,數學運算的能力,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)10【解析】

(1)由二倍角的正弦公式以及正弦定理,可得,再根據二倍角的余弦公式計算即可;(2)由已知可得,利用余弦定理解出,由已知計算出與,再根據三角形的面積公式求出結果即可.【詳解】(1),,在中,由正弦定理得,,又,,,(2),,,由余弦定理得,,則,化簡得,,解得或(負值舍去),,,,,,的面積.【點睛】本題考查了三角形面積公式以及正弦定理、余弦定理的應用,考查了二倍角公式的應用,考查了運算能力,屬于基礎題.18、(1),;(2)【解析】分析:(1)用代入法消參數可得直線的普通方程,由公式可化極坐標方程為直角坐標方程;(2)把直線的參數方程代入曲線的直角坐標方程,其中參數的絕對值表示直線上對應點到的距離,因此有,,直接由韋達定理可得,注意到直線與圓相交,因此判別式>0,這樣可得滿足的不等關系,由此可求得的取值范圍.詳解:(1)直線的參數方程為,普通方程為,將代入圓的極坐標方程中,可得圓的普通方程為,(2)解:直線的參數方程為代入圓的方程為可得:(*),且由題意,,.因為方程(*)有兩個不同的實根,所以,即,又,所以.因為,所以所以.點睛:(1)參數方程化為普通方程,一般用消參數法,而消參法有兩種選擇:一是代入法,二是用公式;(2)極坐標方程與直角坐標方程互化一般利用公式;(3)過的直線的參數方程為(為參數)中參數具有幾何意義:直線上任一點對應參數,則.19、(1);(2)見解析【解析】分析:第一問結合導數的幾何意義以及切點在切線上也在函數圖像上,從而建立關于的等量關系式,從而求得結果;第二問可以有兩種方法,一是將不等式轉化,構造新函數,利用導數研究函數的最值,從而求得結果,二是利用中間量來完成,這樣利用不等式的傳遞性來完成,再者這種方法可以簡化運算.詳解:(1)解:,由題意有,解得(2)證明:(方法一)由(1)知,.設則只需證明,設則,在上單調遞增,,使得且當時,,當時,當時,,單調遞減當時,,單調遞增,由,得,,設,,當時,,在單調遞減,,因此(方法二)先證當時,,即證設,則,且,在單調遞增,在單調遞增,則當時,(也可直接分析顯然成立)再證設,則,令,得且當時,,單調遞減;當時,,單調遞增.,即又,點睛:該題考查的是有關利用導數研究函數的綜合問題,在求解的過程中,涉及到的知識點有導數的幾何意義,有關切線的問題,還有就是應用導數證明不等式,可以構造新函數,轉化為最值問題來解決,也可以借用不等式的傳遞性,借助中間量來完成.20、(1)證明見解析(2)【解析】

(1)要證明平面,只需證明,即可:(2)取中點,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論