江蘇省淮安、宿遷等2026屆高二數(shù)學(xué)第一學(xué)期期末檢測試題含解析_第1頁
江蘇省淮安、宿遷等2026屆高二數(shù)學(xué)第一學(xué)期期末檢測試題含解析_第2頁
江蘇省淮安、宿遷等2026屆高二數(shù)學(xué)第一學(xué)期期末檢測試題含解析_第3頁
江蘇省淮安、宿遷等2026屆高二數(shù)學(xué)第一學(xué)期期末檢測試題含解析_第4頁
江蘇省淮安、宿遷等2026屆高二數(shù)學(xué)第一學(xué)期期末檢測試題含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

江蘇省淮安、宿遷等2026屆高二數(shù)學(xué)第一學(xué)期期末檢測試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.直線與直線的位置關(guān)系是()A.相交但不垂直 B.平行C.重合 D.垂直2.已知點(diǎn)是橢圓上的任意一點(diǎn),過點(diǎn)作圓:的切線,設(shè)其中一個切點(diǎn)為,則的取值范圍為()A. B.C. D.3.命題:“,”的否定形式為()A., B.,C., D.,4.如圖,在單位正方體中,以為原點(diǎn),,,為坐標(biāo)向量建立空間直角坐標(biāo)系,則平面的法向量是()A.,1, B.,1,C.,, D.,1,5.已知數(shù)列滿足,且,為其前n項的和,則()A. B.C. D.6.已知函數(shù)與,則它們的圖象交點(diǎn)個數(shù)為()A.0 B.1C.2 D.不確定7.已知直線與拋物線C:相交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),,的斜率分別為,,則()A. B.C. D.8.已知橢圓和雙曲線有共同焦點(diǎn),是它們一個交點(diǎn),且,記橢圓和雙曲線的離心率分別為,則的最大值為A.3 B.2C. D.9.如圖是函數(shù)的導(dǎo)數(shù)的圖象,則下面判斷正確的是()A.在內(nèi)是增函數(shù)B.在內(nèi)是增函數(shù)C.在時取得極大值D.在時取得極小值10.如圖,矩形BDEF所在平面與正方形ABCD所在平面互相垂直,,,點(diǎn)P在線段EF上.給出下列命題:①存在點(diǎn)P,使得直線平面ACF;②存在點(diǎn)P,使得直線平面ACF;③直線DP與平面ABCD所成角的正弦值的取值范圍是;④三棱錐的外接球被平面ACF所截得的截面面積是.其中所有真命題的序號()A.①③ B.①④C.①②④ D.①③④11.如圖,在三棱錐中,平面ABC,,,,則點(diǎn)A到平面PBC的距離為()A.1 B.C. D.12.已知函數(shù)在區(qū)間上是增函數(shù),則實數(shù)的取值范圍是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.對某市“四城同創(chuàng)”活動中100名志愿者的年齡抽樣調(diào)查統(tǒng)計后得到頻率分布直方圖(如圖),但是年齡組為的數(shù)據(jù)不慎丟失,則依據(jù)此圖可估計該市“四城同創(chuàng)”活動中志愿者年齡在的人數(shù)為________14.若函數(shù)是上的增函數(shù),則實數(shù)的取值范圍是__________.15.已知數(shù)列滿足,,則_____________.16.光線從橢圓的一個焦點(diǎn)發(fā)出,被橢圓反射后會經(jīng)過橢圓的另一個焦點(diǎn);光線從雙曲線的一個焦點(diǎn)發(fā)出,被雙曲線反射后的反射光線等效于從另一個焦點(diǎn)射出.如圖,一個光學(xué)裝置由有公共焦點(diǎn)的橢圓與雙曲線構(gòu)成,現(xiàn)一光線從左焦點(diǎn)發(fā)出,依次經(jīng)與反射,又回到了點(diǎn),歷時秒;若將裝置中的去掉,此光線從點(diǎn)發(fā)出,經(jīng)兩次反射后又回到了點(diǎn),歷時秒;若,則與的離心率之比為________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列滿足,(1)設(shè),求證數(shù)列為等差數(shù)列,并求數(shù)列的通項公式;(2)設(shè),數(shù)列的前n項和為,是否存在正整數(shù)m,使得對任意的都成立?若存在,求出m的最小值;若不存在,試說明理由18.(12分)已知數(shù)列滿足,.(1)求證數(shù)列是等差數(shù)列,并求通項公式;(2)已知數(shù)列的前項和為,求.19.(12分)從甲、乙兩名學(xué)生中選拔一人參加射擊比賽,現(xiàn)對他們的射擊水平進(jìn)行測試,兩人在相同條件下各射靶10次,每次命中的環(huán)數(shù)如下:甲:7,8,6,8,6,5,9,10,7,乙:9,5,7,8,7,6,8,6,7,(1)求,,,(2)你認(rèn)為應(yīng)該選哪名學(xué)生參加比賽?為什么?20.(12分)有時候一些東西吃起來口味越好,對我們的身體越有害.下表給出了不同品牌的一些食品所含熱量的百分比記為和一些美食家以百分制給出的對此種食品口味的評價分?jǐn)?shù)記為:食品品牌12345678910所含熱量的百分比25342019262019241914百分制口味評價分?jǐn)?shù)88898078757165626052參考數(shù)據(jù):,,,參考公式:,(1)已知這些品牌食品的所含熱量的百分比與美食家以百分制給出的對此種食品口味的評價分?jǐn)?shù)具有相關(guān)關(guān)系.試求出回歸方程(最后結(jié)果精確到);(2)某人只能接受食品所含熱量百分比為及以下的食品.現(xiàn)在他想從這些食品中隨機(jī)選取兩種購買,求他所選取的兩種食品至少有一種是美食家以百分制給出的對此種食品口味的評價分?jǐn)?shù)為分以上的概率.21.(12分)已知函數(shù),其中(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;(2)①若恒成立,求的最小值;②證明:,其中.22.(10分)已知函數(shù)(1)當(dāng)時,求的單調(diào)區(qū)間;(2)當(dāng)時,證明:存在最大值,且恒成立.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】把直線化簡后即可判斷.【詳解】直線可化為,所以直線與直線的位置關(guān)系是重合.故選:C2、B【解析】設(shè),得到,利用橢圓的范圍求解.【詳解】解:設(shè),則,,,因為,所以,即,故選:B3、D【解析】根據(jù)含一個量詞的命題的否定方法直接得到結(jié)果.【詳解】因為全稱命題的否定是特稱命題,所以命題:“,”的否定形式為:,,故選:D.【點(diǎn)睛】本題考查全稱命題的否定,難度容易.含一個量詞的命題的否定方法:修改量詞,否定結(jié)論.4、A【解析】設(shè)平面的法向量是,,,由可求得法向量.【詳解】在單位正方體中,以為原點(diǎn),,,為坐標(biāo)向量建立空間直角坐標(biāo)系,,0,,,1,,,1,,,1,,,0,,設(shè)平面的法向量是,,,則,取,得,1,,平面的法向量是,1,.故選:.5、B【解析】根據(jù)等比數(shù)列的前n項和公式即可求解.【詳解】由題可知是首項為2,公比為3的等比數(shù)列,則.故選:B.6、B【解析】令,判斷的單調(diào)性并計算的極值,根據(jù)極值與0的大小關(guān)系判斷的零點(diǎn)個數(shù),得出答案.【詳解】令,則,由,得,∴當(dāng)時,,當(dāng)時,.∴當(dāng)時,取得最小值,∴只有一個零點(diǎn),即與的圖象只有1個交點(diǎn).故選:B.7、C【解析】設(shè),,由消得:,又,由韋達(dá)定理代入計算即可得答案.【詳解】設(shè),,由消得:,所以,故.故選:C【點(diǎn)睛】本題主要考查了直線與拋物線的位置關(guān)系,直線的斜率公式,考查了轉(zhuǎn)化與化歸的思想,考查了學(xué)生的運(yùn)算求解能力.8、D【解析】設(shè)橢圓長半軸長為a1,雙曲線的半實軸長a2,焦距2c.根據(jù)橢圓及雙曲線的定義可以用a1,a2表示出|PF1|,|PF2|,在△F1PF2中根據(jù)余弦定理可得到,利用基本不等式可得結(jié)論【詳解】如圖,設(shè)橢圓的長半軸長為a1,雙曲線的半實軸長為a2,則根據(jù)橢圓及雙曲線的定義:|PF1|+|PF2|=2a1,|PF1|﹣|PF2|=2a2,∴|PF1|=a1+a2,|PF2|=a1﹣a2,設(shè)|F1F2|=2c,∠F1PF2=,則:在△PF1F2中,由余弦定理得,4c2=(a1+a2)2+(a1﹣a2)2﹣2(a1+a2)(a1﹣a2)cos∴化簡得:a12+3a22=4c2,該式可變成:,∴≥2∴,故選D【點(diǎn)睛】本題考查圓錐曲線的共同特征,考查通過橢圓與雙曲線的定義求焦點(diǎn)三角形三邊長,考查利用基本不等式求最值問題,屬于中檔題9、B【解析】根據(jù)圖象判斷的單調(diào)性,由此求得的極值點(diǎn),進(jìn)而確定正確選項.【詳解】由圖可知,在區(qū)間上,單調(diào)遞減;在區(qū)間上,單調(diào)遞增.所以不是的極值點(diǎn),是的極大值點(diǎn).所以ACD選項錯誤,B選項正確.故選:B10、D【解析】當(dāng)點(diǎn)P是線段EF中點(diǎn)時判斷①;假定存在點(diǎn)P,使得直線平面ACF,推理導(dǎo)出矛盾判斷②;利用線面角的定義轉(zhuǎn)化列式計算判斷③;求出外接圓面積判斷④作答.【詳解】取EF中點(diǎn)G,連DG,令,連FO,如圖,在正方形ABCD中,O為BD中點(diǎn),而BDEF是矩形,則且,即四邊形DGFO是平行四邊形,即有,而平面ACF,平面ACF,于是得平面ACF,當(dāng)點(diǎn)P與G重合時,直線平面ACF,①正確;假定存在點(diǎn)P,使得直線平面ACF,而平面ACF,則,又,從而有,在中,,DG是直角邊EF上中線,顯然在線段EF上不存在點(diǎn)與D連線垂直于DG,因此,假設(shè)是錯的,即②不正確;因平面平面,平面平面,則線段EF上的動點(diǎn)P在平面上的射影在直線BD上,于是得是直線DP與平面ABCD所成角的,在矩形BDEF中,當(dāng)P與E不重合時,,,而,則,當(dāng)P與E重合時,,,因此,,③正確;因平面平面,平面平面,,平面,則平面,,在中,,顯然有,,由正弦定理得外接圓直徑,,三棱錐的外接球被平面ACF所截得的截面是的外接圓,其面積為,④正確,所以所給命題中正確命題的序號是①③④.故選:D【點(diǎn)睛】結(jié)論點(diǎn)睛:兩個平面互相垂直,則一個平面內(nèi)任意一點(diǎn)在另一個平面上的射影都在這兩個平面的交線上.11、A【解析】設(shè)點(diǎn)A到平面PBC的距離為,根據(jù)等體積法求解即可.【詳解】因為平面ABC,所以,因為,,所以又,,所以,所以,設(shè)點(diǎn)A到平面PBC的距離為,則,即,,故選:A12、D【解析】由在上恒成立,再轉(zhuǎn)化為求函數(shù)的取值范圍可得【詳解】由已知,在上是增函數(shù),則在上恒成立,即,,當(dāng)時,,所以故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】首先根據(jù)頻率分布直方圖計算出年齡在的頻率,從而可計算出年齡在的人數(shù).【詳解】年齡在的頻率為,所以年齡在的人數(shù)為.故答案為:.14、【解析】由題意知在上恒成立,從而結(jié)合一元二次不等式恒成立問題,可列出關(guān)于的不等式,進(jìn)而可求其取值范圍.【詳解】解:由題意知,知在上恒成立,則只需,解得.故答案為:.【點(diǎn)睛】本題考查了不等式恒成立問題,考查了運(yùn)用導(dǎo)數(shù)探究函數(shù)的單調(diào)性.一般地,由增函數(shù)可得導(dǎo)數(shù)不小于零,由減函數(shù)可得導(dǎo)數(shù)不大于零.對于一元二次不等式在上恒成立問題,如若在上恒成立,可得;若在上恒成立,可得.15、【解析】由題設(shè)可得,應(yīng)用累加法有,結(jié)合已知即可求.【詳解】由題設(shè),,所以,又,所以.故答案為:.16、##0.75【解析】根據(jù)橢圓和雙曲線定義用長半軸長和實半軸長表示出撤掉裝置前后的路程,然后由已知可解.【詳解】記橢圓的長半軸長為,雙曲線的實半軸長為,由橢圓和雙曲線的定義有:,得,即,又由橢圓定義知,,因為,所以,即所以.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)存在,3【解析】(1)結(jié)合遞推關(guān)系可證得bn+1-bn1,且b1=1,可證數(shù)列{bn}為等差數(shù)列,據(jù)此可得數(shù)列的通項公式;(2)結(jié)合通項公式裂項有求和有,再結(jié)合條件可得,即求【詳解】(1)證明:∵,又由a1=2,得b1=1,所以數(shù)列{bn}是首項為1,公差為1的等差數(shù)列,所以bn=1+(n-1)×1=n,由,得(2)解:∵,,所以,依題意,要使對于n∈N*恒成立,只需,解得m≥3或m≤-4又m>0,所以m≥3,所以正整數(shù)m的最小值為318、(1)證明見詳解,(2)【解析】(1)由題意將原式化簡變形得到,可證明數(shù)列是等差數(shù)列,由等差數(shù)列的通項公式則可得,進(jìn)而得到的通項公式;(2)由(1)把的通項公式代入,得到,利用乘公比錯位相減法求和即可.【小問1詳解】若,則,這與矛盾,,由已知得,,故數(shù)列是以為首項,2為公差的等差數(shù)列,,即.【小問2詳解】設(shè),則由(1)知,所以,,兩式相減,則,所以.19、(1);;;;(2)選乙參加比賽,理由見解析.【解析】(1)利用平均數(shù)和方程公式求解;(2)利用(1)的結(jié)果作出判斷.【詳解】(1)由數(shù)據(jù)得:;;(2)由(1)可知,甲乙兩人平均成績一樣,乙的方差小于甲的方差,說明乙的成績更穩(wěn)定;應(yīng)該選乙參加比賽.20、(1)(2)【解析】(1)首先求出、、,即可求出,從而求出回歸直線方程;(2)由表可知某人只能接受的食品共有種,評價為分以上的有種可記為,,另外種記為,,,,用列舉法列出所有的可能結(jié)果,再根據(jù)古典概型的概率公式計算可得;【小問1詳解】解:設(shè)所求的回歸方程為,由,,,,所求的回歸方程為:.【小問2詳解】解:由表可知某人只能接受的食品共有種,其中美食家以百分制給出的對此種食品口味的評價為分以上的有種可記為,,另外種記為,,,.任選兩種分別為:,,,,,,,,,,,,,,,共15個基本事件.記“所選取的兩種食品至少有一種是美食家以百分制給出的對此食品口味的評價分?jǐn)?shù)為分以上”為事件,則事件包含,,,,,,,,共個基本事件,故事件發(fā)生的概率為.21、(1)單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為(2)①1;②證明見解析【解析】(1)求出函數(shù)的導(dǎo)數(shù),在定義域內(nèi),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間即可;(2)①分離參數(shù)得,令,利用函數(shù)的單調(diào)性求出的最大值即可;②由①知:,時取“=”,令,即,最后累加即可.【小問1詳解】由已知條件得,其中的定義域為,則,當(dāng)時,,當(dāng)時,,綜上所述可知:的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為;【小問2詳解】①由恒成立,即恒成立,令,則,當(dāng)時,,當(dāng)時,,∴在上單調(diào)遞增,上單調(diào)遞減,∴,∴的最小值為1.②由①知:,時取“=”,令,得,∴,當(dāng)時,.22、(1)的單增區(qū)間為,;單減區(qū)間為,,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論