畢節(jié)市重點中學2026屆高二數(shù)學第一學期期末統(tǒng)考試題含解析_第1頁
畢節(jié)市重點中學2026屆高二數(shù)學第一學期期末統(tǒng)考試題含解析_第2頁
畢節(jié)市重點中學2026屆高二數(shù)學第一學期期末統(tǒng)考試題含解析_第3頁
畢節(jié)市重點中學2026屆高二數(shù)學第一學期期末統(tǒng)考試題含解析_第4頁
畢節(jié)市重點中學2026屆高二數(shù)學第一學期期末統(tǒng)考試題含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

畢節(jié)市重點中學2026屆高二數(shù)學第一學期期末統(tǒng)考試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.(5分)已知集合A={x|?2<x<4},集合B={x|(x?6)(x+1)<0},則A∩B=A.{x|1<x<4} B.{x|x<4或x>6}C.{x|?2<x<?1} D.{x|?1<x<4}2.為了解義務教育階段學校對雙減政策的落實程度,某市教育局從全市義務教育階段學校中隨機抽取了6所學校進行問卷調查,其中有4所小學和2所初級中學,若從這6所學校中再隨機抽取兩所學校作進一步調查,則抽取的這兩所學校中恰有一所小學的概率是()A. B.C. D.3.在棱長為1的正四面體中,點滿足,點滿足,當和的長度都為最短時,的值是()A. B.C. D.4.由小到大排列的一組數(shù)據(jù):,其中每個數(shù)據(jù)都小于,另一組數(shù)據(jù)2、的中位數(shù)可以表示為()A. B.C. D.5.若點P是曲線上任意一點,則點P到直線的最小距離為()A.0 B.C. D.6.如圖,在棱長為1的正方體中,點B到直線的距離為()A. B.C. D.7.在條件下,目標函數(shù)的最大值為2,則的最小值是()A.20 B.40C.60 D.808.己知F為拋物線的焦點,過F作兩條互相垂直的直線,,直線與C交于A、B兩點,直線與C交于D、E兩點,則的最小值為()A.24 B.22C.20 D.169.已知等差數(shù)列{an}中,a4+a9=8,則S12=()A.96 B.48C.36 D.2410.已知數(shù)列是等比數(shù)列,數(shù)列是等差數(shù)列,若,則()A. B.C. D.11.圓與的公共弦長為()A. B.C. D.12.如圖,在平行六面體(底面為平行四邊形的四棱柱)中,E為延長線上一點,,則為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列的前n項和為,則______14.已知為曲線:上一點,,,則的最小值為______15.已知拋物線的焦點為F,O為坐標原點,M的準線為l且與x軸相交于點B,A為M上的一點,直線AO與直線l相交于C點,若,,則M的標準方程為______________.16.雙曲線的左頂點為,虛軸的一個端點為,右焦點到直線的距離為,則雙曲線的離心率為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列是遞增的等差數(shù)列,,若成等比數(shù)列.(1)求數(shù)列的通項公式;(2)若,數(shù)列的前項和,求.18.(12分)某雙曲線型自然冷卻通風塔的外形是由圖1中的雙曲線的一部分繞其虛軸所在的直線旋轉一周所形成的曲面,如圖2所示.雙曲線的左、右頂點分別為、.已知該冷卻通風塔的最窄處是圓O,其半徑為1;上口為圓,其半徑為;下口為圓,其半徑為;高(即圓與所在平面間的距離)為.(1)求此雙曲線的方程;(2)以原平面直角坐標系的基礎上,保持原點和x軸、y軸不變,建立空間直角坐標系,如圖3所示.在上口圓上任取一點,在下口圓上任取一點.請給出、的值,并求出與的值;(3)在(2)的條件下,是否存在點P、Q,使得P、A、Q三點共線.若不存在,請說明理由;若存在,求出點P、Q的坐標,并證明此時線段PQ上任意一點都在曲面上.19.(12分)已知數(shù)列的前n項積,數(shù)列為等差數(shù)列,且,(1)求與的通項公式;(2)若,求數(shù)列的前n項和20.(12分)已知曲線上任意一點滿足方程,(1)求曲線的方程;(2)若直線與曲線在軸左、右兩側的交點分別是,且,求的最小值.21.(12分)某蓮藕種植塘每年的固定成本是2萬元,每年最大規(guī)模的種植量是8萬千克,每種植1萬千克蓮藕,成本增加0.5萬元.種植萬千克蓮藕的銷售額(單位:萬元)是(是常數(shù)),若種植2萬千克蓮藕,利潤是1.5萬元,求:(1)種植萬千克蓮藕利潤(單位:萬元)為的解析式;(2)要使利潤最大,每年需種植多少萬千克蓮藕,并求出利潤的最大值.22.(10分)已知函數(shù),(1)求曲線在點處的切線方程;(2)若對任意的,恒成立,求實數(shù)的取值范圍

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】由(x?6)(x+1)<0,得?1<x<6,從而有B={x|?1<x<6},所以A∩B={x|?1<x<4},故選D2、A【解析】由組合知識結合古典概型概率公式求解即可.【詳解】從這6所學校中隨機抽取兩所學校的情況共有種,這兩所學校中恰有一所小學的情況共有種,則其概率為.故選:A3、A【解析】根據(jù)給定條件確定點M,N的位置,再借助空間向量數(shù)量積計算作答.【詳解】因,則,即,而,則共面,點M在平面內,又,即,于是得點N在直線上,棱長為1的正四面體中,當長最短時,點M是點A在平面上的射影,即正的中心,因此,,當長最短時,點N是點D在直線AC上的射影,即正邊AC的中點,,而,,所以.故選:A4、C【解析】先根據(jù)題意對數(shù)據(jù)進行排列,然后由中位數(shù)的定義求解即可【詳解】因為由小到大排列的一組數(shù)據(jù):,其中每個數(shù)據(jù)都小于,所以另一組數(shù)據(jù)2、從小到大的排列為,所以這一組數(shù)的中位數(shù)為,故選:C5、D【解析】由導數(shù)的幾何意義求得曲線上與直線平行的切線方程的切線坐標,求出切點到直線的距離即為所求最小距離【詳解】點是曲線上的任意一點,設,令,解得1或(舍去),,∴曲線上與直線平行的切線的切點為,點到直線的最小距離.故選:D.6、A【解析】以為坐標原點,以為單位正交基底,建立空間直角坐標系,取,,利用向量法,根據(jù)公式即可求出答案.【詳解】以為坐標原點,以為單位正交基底,建立如圖所示的空間直角坐標系,則,,取,,則,,則點B到直線AC1的距離為.故選:A7、C【解析】首先畫出可行域,找到最優(yōu)解,得到關系式作為條件,再去求的最小值.【詳解】畫出的可行域,如下圖:由得由得;由得;目標函數(shù)取最大值時必過N點,則則(當且僅當時等號成立)故選:C8、A【解析】由拋物線的性質:過焦點的弦長公式計算可得.【詳解】設直線,的斜率分別為,由拋物線的性質可得,,所以,又因為,所以,所以,故選:A.9、B【解析】利用等差數(shù)列的性質求解即可.【詳解】解:由等差數(shù)列的性質得.故選:B10、A【解析】結合等差中項和等比中項分別求出和,代值運算化簡即可.【詳解】由是等比數(shù)列可得,是等差數(shù)列可得,所以,故選:A11、D【解析】已知兩圓方程,可先讓兩圓方程作差,得到其公共弦的方程,然后再計算圓心到直線的距離,再結合勾股定理即可完成弦長的求解.【詳解】已知圓,圓,兩圓方程作差,得到其公共弦的方程為::,而圓心到直線的距離為,圓的半徑為,所以,所以.故選:D.12、B【解析】根據(jù)空間向量運算求得正確答案.【詳解】.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】先通過裂項相消求出,再代入計算即可.【詳解】,則,故.故答案為:3.14、【解析】曲線是拋物線的右半部分,是拋物線的焦點,作出拋物線的準線,把轉化為到準線的距離,則到準線的距離為所求距離和的最小值【詳解】易知曲線是拋物線的右半部分,如圖,因為拋物線的準線方程為,是拋物線的焦點,所以等于到直線的距離.過作該直線的垂線,垂足為,則的最小值為故答案為:15、【解析】先利用相似關系計算,求得直線OA的方程,再聯(lián)立方程求得,利用拋物線定義根據(jù)即得p值,即得結果.【詳解】因為,,所以,則,如圖,,故,解得,所以,直線OA的斜率為,OA的方程,聯(lián)立直線OA與拋物線方程,解得,所以,故,則拋物線標準方程為.故答案為:.16、【解析】根據(jù)雙曲線左頂點和虛軸端點的定義,結合點到直線距離公式、雙曲線的離心率公式進行求解即可.【詳解】不妨設在縱軸的正半軸上,由雙曲線的標準方程可知:,右焦點的坐標為,直線的方程為:,因為右焦點到直線的距離為,所以有,即雙曲線的離心率為,故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)設等差數(shù)列的公差為,根據(jù)題意列出方程組,求得的值,即可求解;(2)由(1)求得,結合“裂項法”即可求解.【詳解】(1)設等差數(shù)列的公差為,因為,若成等比數(shù)列,可得,解得,所以數(shù)列的通項公式為.(2)由(1)可得,所以.【點睛】關于數(shù)列的裂項法求和的基本策略:1、基本步驟:裂項:觀察數(shù)列的通項,將通項拆成兩項之差的形式;累加:將數(shù)列裂項后的各項相加;消項:將中間可以消去的項相互抵消,將剩余的有限項相加,得到數(shù)列的前項和.2、消項的規(guī)律:消項后前邊剩幾項,后邊就剩幾項,前邊剩第幾項,后邊就剩倒數(shù)第幾項.18、(1);(2),,,;(3)存在,或,證明見解析.【解析】(1)設雙曲線的標準方程為,易知,設,,代入求解即可;(2)分析圓,圓的方程即可求解;(3)利用圓的參數(shù)方程,設,,利用,即可求解,再利用線段PQ上任意一點的特征證明點在曲面上;【小問1詳解】設雙曲線的標準方程為,由題意知,點,的橫坐標分別為,,則設點,的坐標為,,,,,解得,,又塔高米,,解得,故所求的雙曲線的方程為【小問2詳解】點在圓上,;點在圓上,;圓,其半徑為,;圓,其半徑為,【小問3詳解】存在點P、Q,使得P、A、Q三點共線.由點在半徑為的圓上,(為參數(shù));點在半徑為的圓上,(為參數(shù));由已知得,整理得兩式平方求和得,則或當時,,當時,證明:,則,利用,,其中又曲面上的每一點可以是圓與旋轉任意坐標系上的雙曲線的交點,旋轉直角坐標系,保持原點和y軸不變,點所在的軸為軸,此時,滿足,即即點是曲面上的點.19、(1),.(2).【解析】(1)由已知得,,兩式相除得,由已知得,求得數(shù)列的公差為,由等差數(shù)列的通項公式可求得;(2)運用錯位相減法可求得.【小問1詳解】解:因為數(shù)列的前n項積,所以,所以,兩式相除得,因為數(shù)列為等差數(shù)列,且,,所以,即,所以數(shù)列的公差為,所以,所以,【小問2詳解】解:由(1)得,所以,,所以,所以.20、(1)(2)8【解析】(1)根據(jù)雙曲線的定義即可得出答案;(2)可設直線的方程為,則直線的方程為,由,求得,同理求得,從而可求得的值,再結合基本不等式即可得出答案.【小問1詳解】解:設,則,等價于,曲線為以為焦點的雙曲線,且實軸長為2,焦距為,故曲線的方程為:;【小問2詳解】解:由題意可得直線的斜率存在且不為0,可設直線的方程為,則直線的方程為,由,得,所以,同理可得,,所以,,當且僅當時取等號,所以當時,取得最小值8.21、(1),;(2)6萬千克,萬元.【解析】(1)根據(jù)題意找等量關系即可求g(x)解析式,根據(jù)函數(shù)值可求a;(2)根據(jù)g(x)導數(shù)研究其單調性并求其最大值即可.【小問1詳解】種植萬千克蓮

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論