山東省臨沂市羅莊區(qū)七校聯(lián)考2026屆高二上數(shù)學(xué)期末考試試題含解析_第1頁
山東省臨沂市羅莊區(qū)七校聯(lián)考2026屆高二上數(shù)學(xué)期末考試試題含解析_第2頁
山東省臨沂市羅莊區(qū)七校聯(lián)考2026屆高二上數(shù)學(xué)期末考試試題含解析_第3頁
山東省臨沂市羅莊區(qū)七校聯(lián)考2026屆高二上數(shù)學(xué)期末考試試題含解析_第4頁
山東省臨沂市羅莊區(qū)七校聯(lián)考2026屆高二上數(shù)學(xué)期末考試試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

山東省臨沂市羅莊區(qū)七校聯(lián)考2026屆高二上數(shù)學(xué)期末考試試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.《周髀算經(jīng)》中有這樣一個問題:從冬至起,接下來依次是小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種共十二個節(jié)氣,其日影長依次成等差數(shù)列,其中大寒、驚蟄、谷雨三個節(jié)氣的日影長之和為25.5尺,且前九個節(jié)氣日影長之和為85.5尺,則立春的日影長為()A.9.5尺 B.10.5尺C.11.5尺 D.12.5尺2.已知向量,,且,則的值為()A. B.C.或 D.或3.如圖,空間四邊形OABC中,,,,點M在上,且,點N為BC中點,則()A. B.C. D.4.已知一個圓錐的體積為,任取該圓錐的兩條母線a,b,若a,b所成角的最大值為,則該圓錐的側(cè)面積為()A. B.C. D.5.“且”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件6.已知雙曲線(,)的左、右焦點分別為,,.若雙曲線M的右支上存在點P,使,則雙曲線M的離心率的取值范圍為()A. B.C. D.7.在中,、、所對的邊分別為、、,若,,,則()A. B.C. D.8.記不超過x的最大整數(shù)為,如,.已知數(shù)列的通項公式,則使的正整數(shù)n的最大值為()A.5 B.6C.15 D.169.已知橢圓是橢圓上關(guān)于原點對稱的兩點,設(shè)以為對角線的橢圓內(nèi)接平行四邊形的一組鄰邊斜率分別為,則()A.1 B.C. D.10.已知等差數(shù)列滿足,,則()A. B.C. D.11.若某群體中的成員只用現(xiàn)金支付的概率為,既用現(xiàn)金支付也用非現(xiàn)金支付的概率為,則不用現(xiàn)金支付的概率為()A. B.C. D.12.正三棱柱各棱長均為為棱的中點,則點到平面的距離為()A. B.C. D.1二、填空題:本題共4小題,每小題5分,共20分。13.的展開式中所有項的系數(shù)和為_________14.已知雙曲線:,斜率為的直線與E的左右兩支分別交于A,B兩點,點P的坐標(biāo)為,直線AP交E于另一點C,直線BP交E于另一點D.若直線CD的斜率為,則E的離心率為___________15.雙曲線的右焦點到C的漸近線的距離為,則C漸近線方程為______16.某公司青年、中年、老年員工的人數(shù)之比為10∶8∶7,從中抽取100名作為樣本,若每人被抽中的概率是0.2,則該公司青年員工的人數(shù)為__________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓過點,且離心率為.(1)求橢圓的方程;(2)過作斜率分別為的兩條直線,分別交橢圓于點,且,證明:直線過定點.18.(12分)已知函數(shù).(Ⅰ)求的單調(diào)遞減區(qū)間;(Ⅱ)若當(dāng)時,恒成立,求實數(shù)a的取值范圍.19.(12分)已知P={x|x2-8x-20≤0},非空集合S={x|1-m≤x≤1+m}.若x∈P是x∈S的必要條件,求m的取值范圍20.(12分)保護(hù)生態(tài)環(huán)境,提倡環(huán)保出行,節(jié)約資源和保護(hù)環(huán)境,某地區(qū)從2016年開始大力提倡新能源汽車,每年抽樣1000汽車調(diào)查,得到新能源汽車y輛與年份代碼x年的數(shù)據(jù)如下表:年份20162017201820192020年份代碼第x年12345新能源汽車y輛305070100110(1)建立y關(guān)于x的線性回歸方程;(2)假設(shè)該地區(qū)2022年共有30萬輛汽車,用樣本估計總體來預(yù)測該地區(qū)2022年有多少新能源汽車參考公式:回歸方程斜率和截距的最小二乘估計公式分別為,21.(12分)如圖,在四棱錐P﹣ABCD中,PA⊥平面ABCD,AD∥BC,AD⊥CD,且AD=CD=1,BC=2,PA=1(1)求證:AB⊥PC;(2)點M在線段PD上,二面角M﹣AC﹣D的余弦值為,求三棱錐M﹣ACP體積22.(10分)已知點F是拋物線和橢圓的公共焦點,是與的交點,.(1)求橢圓的方程;(2)直線與拋物線相切于點,與橢圓交于,,點關(guān)于軸的對稱點為.求的最大值及相應(yīng)的.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】設(shè)影長依次成等差數(shù)列,公差為,根據(jù)題意結(jié)合等差數(shù)列的通項公式及前項和公式求出首項和公差,即可得出答案.【詳解】解:設(shè)影長依次成等差數(shù)列,公差為,則,前9項之和,即,解得,所以立春的日影長為.故選:B.2、C【解析】根據(jù)空間向量平行的性質(zhì)得,代入數(shù)值解方程組即可.【詳解】因為,所以,所以,所以,解得或.故選:C.3、B【解析】利用空間向量運算求得正確答案.【詳解】.故選:B4、B【解析】設(shè)圓錐的母線長為R,底面半徑長為r,由題可知圓錐的軸截面是等邊三角形,根據(jù)體積公式計算可得,利用扇形的面積公式計算即可求得結(jié)果.【詳解】如圖,設(shè)圓錐的母線長為R,底面半徑長為r,由題可知圓錐的軸截面是等邊三角形,所以,圓錐的體積,解得,所以該圓錐的側(cè)面積為.故選:B5、A【解析】按照充分必要條件的判斷方法判斷,“且”能否推出“”,以及“”能否推出“且”,判斷得到正確答案,【詳解】當(dāng)且時,成立,反過來,當(dāng)時,例:,不能推出且.所以“且”是“”的充分不必要條件.故選:A【點睛】本題考查充分不必要條件的判斷,重點考查基本判斷方法,屬于基礎(chǔ)題型.6、A【解析】利用三角形正弦定理結(jié)合,用a,c表示出,再由點P的位置列出不等式求解即得.【詳解】依題意,點P不與雙曲線頂點重合,在中,由正弦定理得:,因,于是得,而點P在雙曲線M的右支上,即,從而有,點P在雙曲線M的右支上運動,并且異于頂點,于是有,因此,,而,整理得,即,解得,又,故有,所以雙曲線M的離心率的取值范圍為.故選:A7、B【解析】利用正弦定理,以及大邊對大角,結(jié)合正弦定理,即可求得.【詳解】根據(jù)題意,由正弦定理,可得:,解得,故可得或,由,可得,故故選:B.8、C【解析】根據(jù)取整函數(shù)的定義,可求出的值,即可得到答案;【詳解】,,,,,,當(dāng)時,,使的正整數(shù)n的最大值為,故選:C9、C【解析】根據(jù)橢圓的對稱性和平行四邊形的性質(zhì)進(jìn)行求解即可.【詳解】是橢圓上關(guān)于原點對稱兩點,所以不妨設(shè),即,因為平行四邊形也是中心對稱圖形,所以也是橢圓上關(guān)于原點對稱的兩點,所以不妨設(shè),即,,得:,即,故選:C10、D【解析】根據(jù)等差數(shù)列的通項公式求出公差,再結(jié)合即可得的值.【詳解】因為是等差數(shù)列,設(shè)公差為,所以,即,所以,所以,故選:D.11、A【解析】利用對立事件概率公式可求得所求事件的概率.【詳解】由對立事件的概率公式可知,該群體中的成員不用現(xiàn)金支付的概率為.故選:A.12、C【解析】建立空間直角坐標(biāo)系,利用點面距公式求得正確答案.【詳解】設(shè)分別是的中點,根據(jù)正三棱柱的性質(zhì)可知兩兩垂直,以為原點建立如圖所示空間直角坐標(biāo)系,,,.設(shè)平面的法向量為,則,故可設(shè),所以點到平面的距離為.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、##0.015625【解析】賦值法求解二項式展開式中所有項的系數(shù)和.【詳解】令得:,即為展開式中所有項的系數(shù)和.故答案為:14、【解析】分別設(shè)線段的中點,線段的中點,再利用點差法可表示出,由平行關(guān)系易知三點共線,從而利用斜率相等的關(guān)系構(gòu)造方程,代入整理可得到關(guān)系,利用雙曲線得到關(guān)于的齊次方程,進(jìn)而求得離心率.【詳解】設(shè),,線段的中點,兩式相減得:…①設(shè),,線段的中點同理可得:…②,易知三點共線,將①②代入得:,所以,即,由題意可得,故.∴,即故答案為:15、【解析】根據(jù)給定條件求出雙曲線漸近線,再用點到直線的距離公式計算作答【詳解】雙曲線的漸近線為:,即,依題意,,即,解得,所以C漸近線方程為.故答案為:16、200【解析】先根據(jù)分層抽樣的方法計算出該單位青年職工應(yīng)抽取的人數(shù),進(jìn)而算出青年職工的總?cè)藬?shù).【詳解】由題意,從中抽取100名員工作為樣本,需要從該單位青年職工中抽?。ㄈ耍?因為每人被抽中的概率是0.2,所以青年職工共有(人).故答案:200.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)證明見解析.【解析】(1)由離心率、過點和橢圓關(guān)系可構(gòu)造方程求得,由此可得橢圓方程;(2)當(dāng)直線斜率不存在時,表示出兩點坐標(biāo),由兩點連線斜率公式表示出,整理可得直線為;當(dāng)直線斜率存在時,設(shè),與橢圓方程聯(lián)立可得韋達(dá)定理的形式,代入中整理可得,由此可得直線所過定點;綜合兩種情況可得直線過定點.【詳解】(1)橢圓過點,即,;,又,,橢圓的方程為:.(2)當(dāng)直線斜率不存在時,設(shè)直線方程為,則,則,,解得:,直線方程為;當(dāng)直線斜率存在時,設(shè)直線方程為,聯(lián)立方程組得:,設(shè),則,(*),則,將*式代入化簡可得:,即,整理得:,代入直線方程得:,即,聯(lián)立方程組,解得:,,直線恒過定點;綜上所述:直線恒過定點.【點睛】思路點睛:本題考查直線與橢圓綜合應(yīng)用中的直線過定點問題的求解,求解此類問題的基本思路如下:①假設(shè)直線方程,與橢圓方程聯(lián)立,整理為關(guān)于或的一元二次方程的形式;②利用求得變量的取值范圍,得到韋達(dá)定理的形式;③利用韋達(dá)定理表示出已知中的等量關(guān)系,代入韋達(dá)定理可整理得到變量間的關(guān)系,從而化簡直線方程;④根據(jù)直線過定點的求解方法可求得結(jié)果.18、(Ⅰ)單調(diào)遞減區(qū)間為;(Ⅱ).【解析】(Ⅰ)求函數(shù)的導(dǎo)函數(shù),求的區(qū)間即為所求減區(qū)間;(Ⅱ)化簡不等式,變形為,即求,令,求的導(dǎo)函數(shù)判斷的單調(diào)性求出最小值,可求出的范圍.【詳解】(Ⅰ)由題可知.令,得,從而,∴的單調(diào)遞減區(qū)間為.(Ⅱ)由可得,即當(dāng)時,恒成立.設(shè),則.令,則當(dāng)時,.∴當(dāng)時,單調(diào)遞增,,則當(dāng)時,,單調(diào)遞減;當(dāng)時,,單調(diào)遞增.∴,∴.【點睛】思路點睛:在函數(shù)中,恒成立問題,可選擇參變分離的方法,分離出參數(shù)轉(zhuǎn)化為或,轉(zhuǎn)化為求函數(shù)的最值求出的范圍.19、.【解析】由x2﹣8x﹣20≤0,解得﹣2≤x≤10.根據(jù)非空集合S={x|1﹣m≤x≤1+m}.又x∈P是x∈S的必要條件,可得,1﹣m≤1+m,解得m范圍【詳解】由x2﹣8x﹣20≤0,解得﹣2≤x≤10.∴P=[﹣2,10]非空集合S={x|1﹣m≤x≤1+m}.又x∈P是x∈S的必要條件,∴,1﹣m≤1+m,解得0≤m≤3∴m的取值范圍是[0,3]【點睛】本題考查了不等式的解法、簡易邏輯的判定方法,考查了推理能力與計算能力,屬于中檔題20、(1)(2)46800【解析】(1)第一步分別算第x,y的平均值,第二步利用,即可得到方程.(2)由第一問的結(jié)果,帶入方程即可算出預(yù)估的結(jié)果.【小問1詳解】,,,因為,所以,所以【小問2詳解】預(yù)測該地區(qū)2022年抽樣1000汽車調(diào)查中新能源汽車數(shù),當(dāng)時,,該地區(qū)2022年共有30萬輛汽車,所以新能源汽車.21、(1)證明見解析(2)【解析】(1)將問題轉(zhuǎn)化為證明AB⊥平面PAC,然后結(jié)合已知可證;(2)建立空間直角坐標(biāo)系,用向量法結(jié)合已知先確定點M位置,然后轉(zhuǎn)化法求體積可得.【小問1詳解】由題意得四邊形ADCB是直角梯形,AD=CD=1,故∠ACD=45°,∠ACB=45°,AC=.又BC=2,所以,所以,所以AB⊥AC.又PA⊥平面ABCD,AB平面ABCD,所以PA⊥AB.而PA平面PAC,AC平面PAC,,所以AB⊥平面PAC.又PC平面PAC,所以AB⊥PC【小問2詳解】過點A作AE⊥BC于E,易知E為BC中點,以A為原點,AE,AD,AP所在直線為x軸,y軸,z軸建立空間直角坐標(biāo)系,則,,,.則設(shè),.顯然,是平面ACD的一個法向量,設(shè)平面MAC的一個法向量為.則有,取,解得由二面角M

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論