2026屆河北省邢臺(tái)市高二數(shù)學(xué)第一學(xué)期期末聯(lián)考模擬試題含解析_第1頁(yè)
2026屆河北省邢臺(tái)市高二數(shù)學(xué)第一學(xué)期期末聯(lián)考模擬試題含解析_第2頁(yè)
2026屆河北省邢臺(tái)市高二數(shù)學(xué)第一學(xué)期期末聯(lián)考模擬試題含解析_第3頁(yè)
2026屆河北省邢臺(tái)市高二數(shù)學(xué)第一學(xué)期期末聯(lián)考模擬試題含解析_第4頁(yè)
2026屆河北省邢臺(tái)市高二數(shù)學(xué)第一學(xué)期期末聯(lián)考模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩13頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2026屆河北省邢臺(tái)市高二數(shù)學(xué)第一學(xué)期期末聯(lián)考模擬試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若一個(gè)正方體的全面積是72,則它的對(duì)角線長(zhǎng)為()A. B.12C. D.62.在正方體ABCD-A1B1C1D1中,棱長(zhǎng)為a,M,N分別為A1B和AC上的點(diǎn),A1M=AN=,則MN與平面BB1C1C的位置關(guān)系是()A.相交 B.平行C.垂直 D.不能確定3.某地區(qū)高中分三類,A類學(xué)校共有學(xué)生2000人,B類學(xué)校共有學(xué)生3000人,C類學(xué)校共有學(xué)生4000人,若采取分層抽樣的方法抽取900人,則A類學(xué)校中的學(xué)生甲被抽到的概率()A. B.C. D.4.已知,,若,則()A.6 B.11C.12 D.225.已知橢圓的左,右焦點(diǎn)分別為,,直線與C交于點(diǎn)M,N,若四邊形的面積為且,則C的離心率為()A. B.C. D.6.阿基米德不僅是著名的物理學(xué)家,也是著名的數(shù)學(xué)家,他利用“逼近法”得到橢圓的面積公式,設(shè)橢圓的長(zhǎng)半軸長(zhǎng)、短半軸長(zhǎng)分別為,則橢圓的面積公式為,若橢圓的離心率為,面積為,則橢圓的標(biāo)準(zhǔn)方程為()A.或 B.或C.或 D.或7.已知空間向量,則()A. B.C. D.8.驚艷全世界的南非雙曲線大教堂是由倫敦著名的建筑事務(wù)所完成的,建筑師的設(shè)計(jì)靈感源于想法:“你永無止境的愛是多么的珍貴,人們?cè)谀阈蹅サ某岚蛳卤幼o(hù)”.若將如圖所示的雙曲線大教堂外形弧線的一段近似看成雙曲線()下支的一部分,且此雙曲線的一條漸近線方程為,則此雙曲線的離心率為()A. B.C. D.9.若雙曲線的一個(gè)焦點(diǎn)為,則的值為()A. B.C.1 D.10.已知,那么函數(shù)在x=π處的瞬時(shí)變化率為()A. B.0C. D.11.已知點(diǎn),,則經(jīng)過點(diǎn)且經(jīng)過線段AB的中點(diǎn)的直線方程為()A. B.C. D.12.若數(shù)列{an}滿足……,則稱數(shù)列{an}為“半差遞增”數(shù)列.已知“半差遞增”數(shù)列{cn}的前n項(xiàng)和Sn滿足,則實(shí)數(shù)t的取值范圍是()A. B.(-∞,1)C. D.(1,+∞)二、填空題:本題共4小題,每小題5分,共20分。13.已知等差數(shù)列的公差為1,且是和的等比中項(xiàng),則前10項(xiàng)的和為___________.14.已知是橢圓的左、右焦點(diǎn),在橢圓上運(yùn)動(dòng),當(dāng)?shù)闹底钚r(shí),的面積為_______15.已知實(shí)數(shù),滿足不等式組,則目標(biāo)函數(shù)的最大值為__________.16.當(dāng)曲線與直線有兩個(gè)不同的交點(diǎn)時(shí),實(shí)數(shù)k的取值范圍是____________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在棱長(zhǎng)為3的正方體中,分別是上的點(diǎn)且(1)求證:;(2)求平面與平面的夾角的余弦值18.(12分)如圖,直角梯形與等腰直角三角形所在的平面互相垂直,,,.(1)求點(diǎn)C到平面的距離;(2)線段上是否存在點(diǎn)F,使與平面所成角正弦值為,若存在,求出,若不存在,說明理由.19.(12分)從甲、乙兩名學(xué)生中選拔一人參加射擊比賽,現(xiàn)對(duì)他們的射擊水平進(jìn)行測(cè)試,兩人在相同條件下各射靶10次,每次命中的環(huán)數(shù)如下:甲:7,8,6,8,6,5,9,10,7,乙:9,5,7,8,7,6,8,6,7,(1)求,,,(2)你認(rèn)為應(yīng)該選哪名學(xué)生參加比賽?為什么?20.(12分)等差數(shù)列的公差d不為0,滿足成等比數(shù)列,數(shù)列滿足.(1)求數(shù)列與通項(xiàng)公式:(2)若,求數(shù)列的前n項(xiàng)和.21.(12分)若存在常數(shù),使得對(duì)任意,,均有,則稱為有界集合,同時(shí)稱為集合的上界.(1)設(shè),,試判斷A、B是否為有界集合,并說明理由;(2)已知常數(shù),若函數(shù)為有界集合,求集合的上界最小值.22.(10分)已知點(diǎn)F為拋物線的焦點(diǎn),點(diǎn)在拋物線上,且.(1)求該拋物線的方程;(2)若點(diǎn)A在第一象限,且拋物線在點(diǎn)A處的切線交y軸于點(diǎn)M,求的面積.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】根據(jù)全面積得到正方體的棱長(zhǎng),再由勾股定理計(jì)算對(duì)角線.【詳解】設(shè)正方體的棱長(zhǎng)為,對(duì)角線長(zhǎng)為,則有,解得,從而,解得.故選:D2、B【解析】建立空間直角坐標(biāo)系,求得平面BB1C1C的法向量和直線MN的方向向量,利用兩向量垂直,得到線面平行.【詳解】建立如圖所示的空間直角坐標(biāo)系,由圖可知平面BB1C1C的法向量.∵A1M=AN=,∴M,N,∴.∵,∴MN∥平面BB1C1C,故選:B.【點(diǎn)睛】該題考查的是有關(guān)立體幾何的問題,涉及到的知識(shí)點(diǎn)有利于空間向量判斷線面平行,屬于簡(jiǎn)單題目.3、D【解析】利用抽樣的性質(zhì)求解【詳解】所有學(xué)生數(shù)為,所以所求概率為.故選:D4、C【解析】根據(jù)遞推關(guān)系式計(jì)算即可求出結(jié)果.【詳解】因?yàn)?,,,則,,,故選:C.5、A【解析】根據(jù)題意可知四邊形為平行四邊形,設(shè),進(jìn)而得,根據(jù)四邊形面積求出點(diǎn)M的坐標(biāo),再代入橢圓方程得出關(guān)于e的方程,解方程即可.【詳解】如圖,不妨設(shè)點(diǎn)在第一象限,由橢圓的對(duì)稱性得四邊形為平行四邊形,設(shè)點(diǎn),由,得,因?yàn)樗倪呅蔚拿娣e為,所以,得,由,得,解得,所以,即點(diǎn),代入橢圓方程,得,整理得,由,得,解得,由,得.故選:A6、B【解析】根據(jù)題意列出的關(guān)系式,即可求得,再分焦點(diǎn)在軸與軸兩種情況寫出標(biāo)準(zhǔn)方程.【詳解】根據(jù)題意,可得,所以橢圓的標(biāo)準(zhǔn)方程為或.故選:B7、A【解析】求得,即可得出.【詳解】,,,.故選:A.8、B【解析】首先根據(jù)雙曲線的漸近線方程得到,從而得到,,,再求離心率即可.【詳解】雙曲線,,,因?yàn)殡p曲線的一條漸近線方程為,即,所以,解得,所以,,,.故選:B9、B【解析】由題意可知雙曲線的焦點(diǎn)在軸,從而可得,再列方程可求得結(jié)果【詳解】因?yàn)殡p曲線的一個(gè)焦點(diǎn)為,所以,,所以,解得,故選:B10、A【解析】利用導(dǎo)數(shù)運(yùn)算法則求出,根據(jù)導(dǎo)數(shù)的定義即可得到結(jié)論【詳解】由題設(shè),,所以,函數(shù)在x=π處瞬時(shí)變化率為,故選:A11、C【解析】求AB的中點(diǎn)坐標(biāo),根據(jù)直線所過的兩點(diǎn)坐標(biāo)求直線方程即可.【詳解】由已知,AB中點(diǎn)為,又,∴所求直線斜率為,故直線方程為,即故選:C.12、A【解析】根據(jù),利用遞推公式求得數(shù)列的通項(xiàng)公式.再根據(jù)新定義的意義,代入解不等式即可求得實(shí)數(shù)的取值范圍.【詳解】因?yàn)樗援?dāng)時(shí),兩式相減可得,即,所以數(shù)列是以公比的等比數(shù)列當(dāng)時(shí),所以,則由“差半遞增”數(shù)列的定義可知化簡(jiǎn)可得解不等式可得即實(shí)數(shù)的取值范圍為故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用等比中項(xiàng)及等差數(shù)列通項(xiàng)公式求出首項(xiàng),再利用等差數(shù)列的前項(xiàng)和公式求出前10項(xiàng)的和.【詳解】設(shè)等差數(shù)列的首項(xiàng)為,由已知條件得,即,,解得,則.故答案為:.14、【解析】根據(jù)橢圓定義得出,進(jìn)而對(duì)進(jìn)行化簡(jiǎn),結(jié)合基本不等式得出的最小值,并求出的值,進(jìn)而求出面積.【詳解】由橢圓定義可知,,所以,,當(dāng)且僅當(dāng),即時(shí)取“=”.又,所以.所以,由勾股定理可知:,所以.故答案為:.15、##【解析】畫出可行域,通過平移基準(zhǔn)直線到可行域邊界來求得的最大值.【詳解】,畫出可行域如下圖所示,由圖可知,當(dāng)時(shí),取得最大值.故答案為:16、【解析】求出直線恒過的定點(diǎn),結(jié)合曲線的圖象,數(shù)形結(jié)合,找出臨界狀態(tài),即可求得的取值范圍.【詳解】因?yàn)椋士傻?,其表示圓心為,半徑為的圓的上半部分;因?yàn)?,即,其表示過點(diǎn),且斜率為的直線.在同一坐標(biāo)系下作圖如下:不妨設(shè)點(diǎn),直線斜率為,且過點(diǎn)與圓相切的直線斜率為數(shù)形結(jié)合可知:要使得曲線與直線有兩個(gè)不同的交點(diǎn),只需即可.容易知:;不妨設(shè)過點(diǎn)與相切的直線方程為,則由直線與圓相切可得:,解得,故.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)建立空間直角坐標(biāo)系后得到相關(guān)向量,再運(yùn)用數(shù)量積證明;(2)求出相關(guān)平面的法向量,再運(yùn)用夾角公式計(jì)算即可.【小問1詳解】建立如下圖所示的空間直角坐標(biāo)系:,,,,,∴,故.【小問2詳解】,,,設(shè)平面的一個(gè)法向量為,由,令,則,取平面的一個(gè)法向量為,設(shè)平面與平面夾角為,易知:為銳角,故,即平面與平面夾角的余弦值為.18、(1)(2)存在,1【解析】(1)由題意建立空間直角坐標(biāo)系,求得平面向量的法向量和相應(yīng)點(diǎn)的坐標(biāo),利用點(diǎn)面距離公式即可求得點(diǎn)面距離(2)假設(shè)滿足題意的點(diǎn)存在且滿足,由題意得到關(guān)于的方程,解方程即可確定滿足題意的點(diǎn)是否存在【小問1詳解】解:如圖所示,取中點(diǎn),連結(jié),,因?yàn)槿切问堑妊苯侨切?,所以,因?yàn)槊婷?,面面面,所以平面,又因?yàn)椋运倪呅问蔷匦?,可得,則,建立如圖所示的空間直角坐標(biāo)系,則:據(jù)此可得,設(shè)平面的一個(gè)法向量為,則,令可得,從而,又,故求點(diǎn)到平面的距離【小問2詳解】解:假設(shè)存在點(diǎn),,滿足題意,點(diǎn)在線段上,則,即:,,,,,據(jù)此可得:,,從而,,,,設(shè)與平面所成角所成的角為,則,整理可得:,解得:或(舍去)據(jù)此可知,存在滿足題意的點(diǎn),點(diǎn)為的中點(diǎn),即19、(1);;;;(2)選乙參加比賽,理由見解析.【解析】(1)利用平均數(shù)和方程公式求解;(2)利用(1)的結(jié)果作出判斷.【詳解】(1)由數(shù)據(jù)得:;;(2)由(1)可知,甲乙兩人平均成績(jī)一樣,乙的方差小于甲的方差,說明乙的成績(jī)更穩(wěn)定;應(yīng)該選乙參加比賽.20、(1),(2)【解析】(1)根據(jù)等比中項(xiàng)的性質(zhì)及等差數(shù)列的通項(xiàng)公式得到方程求出公差,即可求出的通項(xiàng)公式,由,當(dāng)時(shí),求出,當(dāng)時(shí),兩式作差,即可求出;(2)由(1)可得,利用錯(cuò)位相減法求和即可;【小問1詳解】解:由已知,又,所以故解得(舍去)或∴∵①故當(dāng)時(shí),可知,∴,當(dāng)時(shí),可知②①②得∴又也滿足,故當(dāng)時(shí),都有;【小問2詳解】解:由(1)知,故③,∴④,由③④得整理得.21、(1)A不是有界集合,B是有界集合,理由見解析(2)【解析】(1)解不等式求得集合A;由,根據(jù)指數(shù)函數(shù)的性質(zhì)求得集合B,由此可得結(jié)論;(2)由函數(shù),得出函數(shù)單調(diào)遞減,即有,分和兩種情況討論,求得集合的上界,再由集合的上界函數(shù)的單調(diào)性可求得集合的上界的最小值.【小問1詳解】解:由得,即,,對(duì)任意一個(gè),都有一個(gè),故不是有界集合;,,,,是有界集合,上界為1;【小問2詳解】解:,因?yàn)椋院瘮?shù)單調(diào)遞減,,因?yàn)楹瘮?shù)為有界集合,所以分兩種情況討論:當(dāng),即時(shí),集合的上界,當(dāng)時(shí),不等式為;當(dāng)時(shí),不等式為;當(dāng)時(shí),不等式為,即時(shí),集合的上界,當(dāng),即時(shí),集合的上界,同上解不等式得的解為,即時(shí),集合的上界,綜上得時(shí),集合的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論