版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
江蘇省2026屆高三上學期期中適應性練習數(shù)學試題一、單選題1.已知集合,,則(
)A. B.C. D.2.若復數(shù)滿足(為虛數(shù)單位),則(
)A. B. C. D.3.空間中有兩個不同的平面和兩條不同的直線,則下列命題正確的是(
)A.若,則B.若,則C.若,則D.若,則4.在高三某次調(diào)研考試時,某學習小組對本組6名同學的考試成績進行統(tǒng)計,其中數(shù)學試卷上有一道滿分為15分的解答題,6名同學的得分按從低到高的順序依次為,若該組數(shù)據(jù)的中位數(shù)等于這組數(shù)據(jù)的極差,則該組數(shù)據(jù)的上四分位數(shù)是()A.6 B.8 C.9 D.105.已知隨機變量,且,則的展開式中的系數(shù)為(
)A. B. C. D.6.某校安排高一年級班共個班去五個勞動教育基地進行社會實踐,每個班去一個基地,每個基地至少安排一個班,則高一班恰被安排到基地的排法種數(shù)為(
)A. B. C. D.7.已知為的一個內(nèi)角,若,則(
)A. B.C. D.8.已知函數(shù),若,則的大小關系為(
)A. B.C. D.二、多選題9.已知函數(shù),下列說法正確的是(
)A.的圖象關于直線對稱B.在上單調(diào)遞增C.的圖象可以由的圖象向右平移個單位長度得到D.若在區(qū)間上存在極大值點和極小值點,則實數(shù)的取值范圍為10.已知函數(shù),若有個零點,則下列結論正確的是(
)A. B.C. D.11.已知正方體的棱長,點P是線段(含端點)上的一個動點,點M在上底面內(nèi)(含邊界),且.下列結論正確的是()A.點的軌跡長度為B.存在點P,使得直線與所成角為C.點到平面距離的最大值為D.的最小值為三、填空題12.已知一個圓柱的底面半徑為,體積為,若該圓柱的底面圓周都在球的球面上,則球的表面積為.13.已知函數(shù),若的圖象關于中心對稱,則;.14.有3個分別標有數(shù)字的小球,從中有放回地隨機取4次,每次取1個球.記為這3個球中至少被取出1次的球的個數(shù),則的數(shù)學期望.四、解答題15.近日,2025年江蘇省城市足球聯(lián)賽(被球迷稱為“蘇超”)火爆全網(wǎng),話題不斷.常州市隨機抽取了部分市民,調(diào)查他們對賽事的關注情況,得到如下表格:性別不關注賽事關注賽事合計男性25150175女性5075125合計75225300(1)對照列聯(lián)表,根據(jù)小概率值的獨立性檢驗,能否認為關注“蘇超”賽事與性別有關?(2)現(xiàn)從被調(diào)查的關注賽事的市民中,按照性別比例采用分層抽樣的方法隨機抽取名市民參加“蘇超”賽事知識問答.已知男性、女性市民順利完成知識問答的概率分別為,每個人是否順利完成相互獨立.求在有且只有人順利完成的條件下,這人的性別不同的概率.附:.0.010.0050.0016.6357.87910.82816.如圖,在四面體中,平面,是的中點,是的中點.點在線段上,且.(1)求證:平面;(2)若,求平面與平面的夾角的余弦值.17.在中,角的對邊分別為,.(1)判斷的形狀;(2)延長線段到(不同于),若且,求角的大?。?8.某生物檢測中心在化驗某種動物血液時有兩種化驗方法:①逐份化驗法:將血液樣本逐份進行化驗,則份血液樣本共需要化驗次.②混合化驗法:將份血液樣本分別取樣混合在一起化驗.若化驗結果呈陰性,則這份血液均為陰性,此時共化驗次;若化驗結果呈陽性,為了確定陽性血液,就需要再采取逐份化驗,故此時共需要化驗次.(1)現(xiàn)有份血液樣本,其中有份為陽性血液,現(xiàn)采取逐份化驗法進行化驗,求恰好化驗2次就把全部陽性樣本檢測出來的概率;(2)現(xiàn)有份血液樣本,每份呈陽性的概率為,采用份為一組的混合化驗法進行化驗,記這份血液樣本需要化驗的總次數(shù)為,求隨機變量的分布列和均值;(3)現(xiàn)有份血液樣本,每份呈陽性的概率為,記采用逐份化驗法時需要化驗的次數(shù)為,采用份為一組的混合化驗法時需要化驗的總次數(shù)為.當時,求的最大值.(參考數(shù)據(jù):)19.已知函數(shù).(1)當時,求曲線經(jīng)過原點的切線方程;(2)當時,,求的取值范圍;(3)證明:對于任意的,.
參考答案1.B【詳解】依題意,,則或,而,所以.故選:B2.C【詳解】,,所以,所以,所以,故選:C3.B【詳解】選項A,若,則與可以相交,也可以平行,不一定垂直,A錯;選項B,若,則直線的方向向量分別是平面的法向量兩平面垂直,即為它們的法向量垂直,則,B正確;選項C,若,且,則或,C錯;選項D,若,則可能有,也可能相交,D錯.故選:B.4.D【詳解】已知數(shù)據(jù),,,,10,12,數(shù)據(jù)個數(shù)為偶數(shù),所以中位數(shù)是中間兩個數(shù)和的平均數(shù),即中位數(shù)為.極差是最大值12減去最小值,即極差為.因為該組數(shù)據(jù)的中位數(shù)等于這組數(shù)據(jù)的極差,所以.可得:.此時這組數(shù)據(jù)為,,,10,10,12.計算,所以該數(shù)據(jù)的上四分位數(shù)是第個數(shù),即10.故選:D.5.B【詳解】由題意可知,∴,∴,展開式的通項為,當時,,即.所以的展開式中的系數(shù)為.故選:B.6.C【詳解】先將6個班中隨機挑選兩個班為一組,共有種排法,再將含高一班這個組安排去基地,有種方法,最后將剩下4個班(組)全排列,即由種排法,所以共有種排法.故選:C.7.B【詳解】由為的一個內(nèi)角及,得,則,整理得,即,則,解得,于是,而,解得.故選:B8.A【詳解】由題意知的定義域為R,,故為偶函數(shù),當時,,由于在上單調(diào)遞增,對勾函數(shù)在上單調(diào)遞增,故函數(shù)在上單調(diào)遞增,因此在上單調(diào)遞增,構造,,當時,,故在上單調(diào)遞減,又,∴,即,即,∴,即,故選:A9.BC【詳解】對于A,因為,所以直線不是圖象的對稱軸,故A不正確;對于B,若,則,所以在上單調(diào)遞增,故B正確;對于C,向右平移個單位長度,得,故C正確;對于D,由,得,而在上有極大值點和極小值點,則,解得,實數(shù)的取值范圍為.故D不正確.故選:BC.10.ABD【詳解】當時,單調(diào)遞減;當時,對稱軸,且開口向下.∴函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,在上單調(diào)遞減,∴,,函數(shù)大致圖象如下:令,即個零點,即∴,A選項,作關于對稱的函數(shù),如圖:由圖可知,∴,A選項正確;B選項,由對稱性可知,∵,∴,∴,B選項正確;C選項,當時,,,則,,此時,∵,∴,C選項錯誤;D選項,,∵是方程的兩根,∴,又∵,即,∴,令,顯然在上單調(diào)遞增,∴,D選項正確.故選:ABD.11.ACD【詳解】因為正方體的棱長,在中,,由勾股定理得到,所以點的軌跡是以為圓心,1為半徑的圓弧,其長度為,故A項正確;因為,所以就是直線與所成角,因為正方體中平面且平面,所以,所以中,所以,又因為,故B項錯誤.以D為原點,分別以所在直線為軸建立空間直角坐標系,,,,,設平面的法向量為,,,則,令則,因為,所以點M到平面PBD的距離為;當最大,最小時有最大值,即時距離有,故C項正確.將與展開在一個平面上,此時的最小值就是
(為展開后的點),所以,,所以,,所以由余弦定理得到:所以,的最小值為,故D項正確.故選:ACD12.【詳解】設一個圓柱的高為,一個圓柱的底面半徑為,體積為,,解得,又該圓柱的底面圓周都在球的球面上,設球的半徑為,則,故球的表面積為.故答案為:.13.30【詳解】.對于函數(shù)易知,由,因此是關于中心對稱圖形,而是由經(jīng)過伸縮、上下平移變換所得到的,因此對稱中心的橫坐標不變,故,因此的對稱中心為,有,解得.故答案為:3;0.14.【詳解】依題意,的可能取值為,總的選取可能數(shù)為,其中:即4次抽取同一球,選擇球的編號有3種方式,故;:恰好兩種不同球被取出;情況一:一種球出現(xiàn)1次、另一種球出現(xiàn)3次,可能情況有種,情況二:一種球出現(xiàn)2次、另一種球出現(xiàn)2次,可能情況有種,故;:三種不同球被取出,則一種球出現(xiàn)1次、另一種球出現(xiàn)1次、第三種球出現(xiàn)2次,可能情況有種,故;所以.故答案為:15.(1)認為關注“蘇超”賽事與性別有關(2).【詳解】(1)零假設:關注“蘇超”賽事與性別無關.,故依據(jù)小概率值的獨立性檢驗,推斷零假設不成立,即認為關注“蘇超”賽事與性別有關;(2)由分層抽樣可知,抽取男性市民人,女性市民人,記“有且只有人順利完成知識問答”事件,“這人的性別不同”為事件,則,,∴,∴在有且僅有人順利完成知識問答的條件下,這人的性別不同的概率為.16.(1)證明見解析(2).【詳解】(1)取線段的中點,線段靠近點的四等分點,連接,如圖.∵是的中點,∴,且,即,又,∴,且,∴,且,∴四邊形為平行四邊形,∴,又平面,平面,∴平面.(2)∵平面且,∴過作軸垂直平面,以方向為軸正向,建立空間直角坐標系.設,則,∴.設平面的法向量為,則,令,得.取平面的法向量為.
設平面與平面的夾角為,則,即平面與平面的夾角的余弦值為.17.(1)是等腰三角形(2)或【詳解】(1)∵,∴,即,∴,即,由余弦定理得,化簡得,∴是等腰三角形.(2)如圖,
由(1)設,在中,由正弦定理得①,在中,由正弦定理得②,∵,①②相除可得,∴,即,∴,∵,∴,∴或,∴或,∴角為或.18.(1).(2)分布列見解析,(3)8【詳解】(1)記事件“恰好化驗兩次就把全部陽性樣本檢查出來”,
則∴故恰好化驗兩次就把全部陽性樣本檢查出來的概率為.(2)每組化驗的次數(shù)可能是或.記事件“每組化驗次數(shù)為”,則事件“每組化驗次數(shù)為”,∴,,易知,,,,∴的分布列為.(3),∵,∴,∴,∴,當時,,即,兩邊取以為底的對數(shù),得到,令,則,當時,,單調(diào)遞增;當時,,單調(diào)遞減,又,∴的最大值為.19.(1)(2)(3)證
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 制造費用核算培訓
- 口腔科普有聲課件mp3
- 司考音頻課件轉(zhuǎn)漢字兼職
- 口腔惡性腫瘤課件
- 口腔醫(yī)院院感崗前培訓
- 口腔醫(yī)學培訓
- 臺賬填寫要求培訓
- 口算兩位數(shù)乘兩位數(shù)課件
- 口才班龍年課件
- 口才培訓班教學課件
- DB44∕T 2328-2021 慢性腎臟病中醫(yī)健康管理技術規(guī)范
- 農(nóng)村水利技術術語(SL 56-2013)中文索引
- 中考語文文言文150個實詞及虛詞默寫表(含答案)
- 廣西小額貸管理辦法
- 海南省醫(yī)療衛(wèi)生機構數(shù)量基本情況數(shù)據(jù)分析報告2025版
- 電影院消防安全制度范本
- 酒店工程維修合同協(xié)議書
- 2025年版?zhèn)€人與公司居間合同范例
- 電子商務平臺項目運營合作協(xié)議書范本
- 動設備監(jiān)測課件 振動狀態(tài)監(jiān)測技術基礎知識
- 專題15平面解析幾何(選擇填空題)(第一部分)(解析版) - 大數(shù)據(jù)之十年高考真題(2014-2025)與優(yōu) 質(zhì)模擬題(新高考卷與全國理科卷)
評論
0/150
提交評論