山東省滕州市2026屆高二上數(shù)學(xué)期末綜合測(cè)試試題含解析_第1頁
山東省滕州市2026屆高二上數(shù)學(xué)期末綜合測(cè)試試題含解析_第2頁
山東省滕州市2026屆高二上數(shù)學(xué)期末綜合測(cè)試試題含解析_第3頁
山東省滕州市2026屆高二上數(shù)學(xué)期末綜合測(cè)試試題含解析_第4頁
山東省滕州市2026屆高二上數(shù)學(xué)期末綜合測(cè)試試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

山東省滕州市2026屆高二上數(shù)學(xué)期末綜合測(cè)試試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.?dāng)?shù)列是等比數(shù)列,是其前n項(xiàng)之積,若,則的值是()A.1024 B.256C.2 D.5122.宋元時(shí)期數(shù)學(xué)名著《算學(xué)啟蒙》中有關(guān)于“松竹并生"的問題,松長(zhǎng)三尺,竹長(zhǎng)一尺,松日自半,竹日自倍,松竹何日而長(zhǎng)等,如圖是源于其思想的一個(gè)程序框圖,若輸入的,分別為3,1,則輸出的等于A.5 B.4C.3 D.23.已知直線是圓的對(duì)稱軸,過點(diǎn)A作圓C的一條切線,切點(diǎn)為B,則|AB|=()A.1 B.2C.4 D.84.已知向量,,且,則實(shí)數(shù)等于()A.1 B.2C. D.5.已知命題“”為真命題,“”為真命題,則()A.為假命題,為真命題 B.為真命題,為真命題C.為真命題,為假命題 D.為假命題,為假命題6.直線,若的傾斜角為60°,則的斜率為()A. B.C. D.7.已知集合,,則中元素的個(gè)數(shù)為()A.3 B.2C.1 D.08.已知三個(gè)頂點(diǎn)都在拋物線上,且為拋物線的焦點(diǎn),若,則()A.6 B.8C.10 D.129.設(shè)、是橢圓:的左、右焦點(diǎn),為直線上一點(diǎn),是底角為的等腰三角形,則的離心率為A. B.C. D.10.已知圓上有三個(gè)點(diǎn)到直線的距離等于1,則的值為()A. B.C. D.111.已知圓:的面積被直線平分,圓:,則圓與圓的位置關(guān)系是()A.相離 B.相交C.內(nèi)切 D.外切12.已知數(shù)列是首項(xiàng)為,公差為1的等差數(shù)列,數(shù)列滿足.若對(duì)任意的,都有成立,則實(shí)數(shù)的取值范圍是()A., B.C., D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,在長(zhǎng)方體中,,,則直線與平面所成角的正弦值為__________.14.已知,,若x,a,b,y成等比數(shù)列,x,c,d,y成等差數(shù)列,則的最小值為_____________.15.已知正方體的棱長(zhǎng)為2,E為線段中點(diǎn),F(xiàn)為線段BC上動(dòng)點(diǎn),則(1)的最小值為______;(2)點(diǎn)F到直線DE距離的最小值為______.16.已知雙曲線的左、右焦點(diǎn)分別為,右頂點(diǎn)為,為雙曲線上一點(diǎn),且,線段的垂直平分線恰好經(jīng)過點(diǎn),則雙曲線的離心率為_______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,五邊形為東京奧運(yùn)會(huì)公路自行車比賽賽道平面設(shè)計(jì)圖,根據(jù)比賽需要,在賽道設(shè)計(jì)時(shí)需預(yù)留出,兩條服務(wù)通道(不考慮寬度),,,,,為賽道.現(xiàn)已知,,千米,千米(1)求服務(wù)通道的長(zhǎng)(2)在上述條件下,如何設(shè)計(jì)才能使折線賽道(即)的長(zhǎng)度最大,并求最大值18.(12分)已知數(shù)列是等差數(shù)列,(1)求的通項(xiàng)公式;(2)求的最大項(xiàng)19.(12分)已知橢圓經(jīng)過點(diǎn),橢圓E的一個(gè)焦點(diǎn)為.(1)求橢圓E的方程;(2)若直線l過點(diǎn)且與橢圓E交于兩點(diǎn).求的最大值.20.(12分)拋物線的焦點(diǎn)為F,過點(diǎn)F的直線交拋物線于A,B兩點(diǎn)(1)若,求直線AB的斜率;(2)設(shè)點(diǎn)M在線段AB上運(yùn)動(dòng),原點(diǎn)O關(guān)于點(diǎn)M的對(duì)稱點(diǎn)為C,求四邊形OACB面積的最小值21.(12分)中心在原點(diǎn),焦點(diǎn)在x軸上的一橢圓與一雙曲線有共同的焦點(diǎn)F1,F(xiàn)2,且|F1F2|=,橢圓的長(zhǎng)半軸長(zhǎng)與雙曲線半實(shí)軸長(zhǎng)之差為4,離心率之比為3∶7(1)求這兩曲線方程;(2)若P為這兩曲線的一個(gè)交點(diǎn),求△F1PF2的面積22.(10分)已知橢圓C與橢圓有相同的焦點(diǎn),且離心率為.(1)橢圓C的標(biāo)準(zhǔn)方程;(2)若橢圓C的兩個(gè)焦點(diǎn),P是橢圓上的點(diǎn),且,求的面積.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】設(shè)數(shù)列的公比為q,由已知建立方程求得q,再利用等比數(shù)列的通項(xiàng)公式可求得答案.【詳解】解:因?yàn)閿?shù)列是等比數(shù)列,是其前n項(xiàng)之積,,設(shè)數(shù)列的公比為q,所以,解得,所以,故選:D.2、B【解析】由已知中的程序框圖可知:該程序的功能是利用循環(huán)結(jié)構(gòu)計(jì)算并輸出變量S的值,模擬程序的運(yùn)行過程,分析循環(huán)中各變量值的變化情況,可得答案【詳解】解:當(dāng)n=1時(shí),a=3,b=2,滿足進(jìn)行循環(huán)的條件,當(dāng)n=2時(shí),a,b=4,滿足進(jìn)行循環(huán)的條件,當(dāng)n=3時(shí),a,b=8,滿足進(jìn)行循環(huán)的條件,當(dāng)n=4時(shí),a,b=16,不滿足進(jìn)行循環(huán)的條件,故輸出的n值為4,故選:B【點(diǎn)睛】本題考查的知識(shí)點(diǎn)是程序框圖,當(dāng)循環(huán)的次數(shù)不多,或有規(guī)律時(shí),常采用模擬循環(huán)的方法解答3、C【解析】首先將圓心坐標(biāo)代入直線方程求出參數(shù)a,求得點(diǎn)A的坐標(biāo),由切線與圓的位置關(guān)系構(gòu)造直角三角形從而求得.【詳解】圓即,圓心為,半徑為r=3,由題意可知過圓的圓心,則,解得,點(diǎn)A坐標(biāo)為,,切點(diǎn)為B則,故選:C【點(diǎn)睛】本題考查直線與圓的位置關(guān)系,屬于基礎(chǔ)題.4、C【解析】利用空間向量垂直的坐標(biāo)表示計(jì)算即可得解【詳解】因向量,,且,則,解得,所以實(shí)數(shù)等于.故選:C5、A【解析】根據(jù)復(fù)合命題的真假表即可得出結(jié)果.【詳解】若“”為真命題,則為假命題,又“”為真命題,則至少有一個(gè)真命題,所以為真命題,即為假命題,為真命題.故選:A6、D【解析】直線,斜率乘積為,斜線斜率等于傾斜角的正切值.【詳解】,,所以.故選:D.7、B【解析】集合中的元素為點(diǎn)集,由題意,可知集合A表示以為圓心,為半徑的單位圓上所有點(diǎn)組成的集合,集合B表示直線上所有的點(diǎn)組成的集合,又圓與直線相交于兩點(diǎn),,則中有2個(gè)元素.故選B.【名師點(diǎn)睛】求集合的基本運(yùn)算時(shí),要認(rèn)清集合元素的屬性(是點(diǎn)集、數(shù)集或其他情形)和化簡(jiǎn)集合,這是正確求解集合運(yùn)算的兩個(gè)先決條件.集合中元素的三個(gè)特性中的互異性對(duì)解題影響較大,特別是含有字母的集合,在求出字母的值后,要注意檢驗(yàn)集合中的元素是否滿足互異性.8、D【解析】設(shè),,,由向量關(guān)系化為坐標(biāo)關(guān)系,再結(jié)合拋物線的焦半徑公式即可計(jì)算【詳解】由得焦點(diǎn),準(zhǔn)線方程為,設(shè),,由得則,化簡(jiǎn)得所以故選:D9、C【解析】如下圖所示,是底角為的等腰三角形,則有所以,所以又因?yàn)?,所以,,所以所以答案選C.考點(diǎn):橢圓的簡(jiǎn)單幾何性質(zhì).10、A【解析】求出圓心和半徑,由題意可得圓心到直線的距離,列方程即可求得的值.【詳解】由圓可得圓心,半徑,因?yàn)閳A上有三個(gè)點(diǎn)到直線的距離等于1,所以圓心到直線的距離,可得:,故選:A.11、D【解析】根據(jù)題意,圓:的面積被直線平分,即直線經(jīng)過圓的圓心,由此求出兩圓的圓心和半徑,然后判斷兩個(gè)圓的位置關(guān)系即可【詳解】根據(jù)題意,圓:,即,其圓心為,半徑,圓:的面積被直線平分,即直線經(jīng)過圓的圓心,則有1?m+1=0,解可得m=2,即所以圓的圓心(1,?1),半徑為1,圓的標(biāo)準(zhǔn)方程是,圓心(?2,3),半徑為4,其圓心距,所以兩個(gè)圓外切,故選:D.12、D【解析】由等差數(shù)列通項(xiàng)公式得,再結(jié)合題意得數(shù)列單調(diào)遞增,且滿足,,即,再解不等式即可得答案.【詳解】解:根據(jù)題意:數(shù)列是首項(xiàng)為,公差為1的等差數(shù)列,所以,由于數(shù)列滿足,所以對(duì)任意的都成立,故數(shù)列單調(diào)遞增,且滿足,,所以,解得故選:二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】過作,垂足為,則平面,則即為所求角,從而可得結(jié)果.【詳解】依題意,畫出圖形,如圖,過作,垂足為,可知點(diǎn)H為中點(diǎn),由平面,可得,又所以平面,則即為所求角,因?yàn)?,,所以,故答案為?14、4【解析】根據(jù)等差數(shù)列和等比數(shù)列性質(zhì)把用表示,然后由基本不等式得最小值【詳解】由題意,,所以,當(dāng)且僅當(dāng)時(shí)等號(hào)成立故答案為:415、①.;②..【解析】建立空間直角坐標(biāo)系.空一:利用空間兩點(diǎn)間距離公式,結(jié)合平面兩點(diǎn)間距離公式進(jìn)行求解即可;空二:根據(jù)空間向量垂直的性質(zhì)進(jìn)行求解即可.【詳解】建立如圖所示的空間直角坐標(biāo)系,則有.空一:,代數(shù)式表示橫軸上一點(diǎn)到點(diǎn)和點(diǎn)的距離之和,如下圖所示:設(shè)關(guān)于橫軸的對(duì)稱點(diǎn)為,當(dāng)線段與橫軸的交點(diǎn)為點(diǎn)時(shí),有最小值,最小值為;空二:設(shè),為垂足,則有,,,因?yàn)?,所以,因此,化?jiǎn)得:,當(dāng)時(shí),即時(shí),此時(shí),有最小值,即最小值為,故答案為:;【點(diǎn)睛】關(guān)鍵點(diǎn)睛:利用空間向量垂直的性質(zhì)進(jìn)行求解是解題的關(guān)鍵.16、【解析】在中求出,再在中求出,即可得到的齊次式,化簡(jiǎn)即可求出離心率【詳解】設(shè)雙曲線:,,不妨設(shè)為雙曲線右支上一點(diǎn)因?yàn)榫€段的垂直平分線恰好經(jīng)過點(diǎn),且,所以,在中,,所以,,在中,,所以,,因此,,化簡(jiǎn)得,,即,而,解得故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)服務(wù)通道的長(zhǎng)為千米(2)時(shí),折線賽道的長(zhǎng)度最大,最大值為千米【解析】(1)先在中利用正弦定理得到長(zhǎng)度,再在中,利用余弦定理得到即可;(2)在中利用余弦定理得到,再根據(jù)基本等式求解最值即可.【小問1詳解】在中,由正弦定理得:,在中,由余弦定理,得,即解得或(負(fù)值舍去)所以服務(wù)通道的長(zhǎng)為千米【小問2詳解】在中,由余弦定理得:,即,所以因?yàn)?,所以,所以,即(?dāng)且僅當(dāng)時(shí)取等號(hào))即當(dāng)時(shí),折線賽道的長(zhǎng)度最大,最大值為千米18、(1);(2).【解析】(1)利用等差數(shù)列的通項(xiàng)公式進(jìn)行求解即可;(2)運(yùn)用二次函數(shù)的性質(zhì)進(jìn)行求解即可.【小問1詳解】設(shè)等差數(shù)列的公差為,所以有,所以;【小問2詳解】由(1)可知:,當(dāng)時(shí),有最大項(xiàng),最大項(xiàng)為:.19、(1)(2)【解析】(1)設(shè)橢圓的左,右焦點(diǎn)分別為,.利用橢圓的定義求出,然后求解,得到橢圓方程;(2)當(dāng)直線的斜率存在時(shí),設(shè),,,,,聯(lián)立直線與橢圓方程,利用韋達(dá)定理以及弦長(zhǎng)公式得到弦長(zhǎng)的表達(dá)式,再通過換元利用二次函數(shù)的性質(zhì)求解最值即可【小問1詳解】依題意,設(shè)橢圓的左,右焦點(diǎn)分別為,則,,,,橢圓的方程為【小問2詳解】當(dāng)直線的斜率存在時(shí),設(shè),,,,由得由得由,得設(shè),則,當(dāng)直線的斜率不存在時(shí),,的最大值為20、(1);(2)面積最小值是4【解析】本題主要考查拋物線的標(biāo)準(zhǔn)方程及其幾何性質(zhì)、直線與圓錐曲線的位置關(guān)系、直線的斜率等基礎(chǔ)知識(shí),考查學(xué)生的分析問題解決問題的能力、轉(zhuǎn)化能力、計(jì)算能力.第一問,依題意F(1,0),設(shè)直線AB的方程為.將直線AB的方程與拋物線的方程聯(lián)立,得,由此能夠求出直線AB的斜率;第二問,由點(diǎn)C與原點(diǎn)O關(guān)于點(diǎn)M對(duì)稱,得M是線段OC的中點(diǎn),從而點(diǎn)O與點(diǎn)C到直線AB的距離相等,所以四邊形OACB的面積等于,由此能求出四邊形OACB的面積的最小值試題解析:(1)依題意知F(1,0),設(shè)直線AB方程為.將直線AB的方程與拋物線的方程聯(lián)立,消去x得.設(shè),,所以,.①因?yàn)?,所以.②?lián)立①和②,消去,得所以直線AB的斜率是(2)由點(diǎn)C與原點(diǎn)O關(guān)于點(diǎn)M對(duì)稱,得M是線段OC中點(diǎn),從而點(diǎn)O與點(diǎn)C到直線AB的距離相等,所以四邊形OACB的面積等于因?yàn)?,所以?dāng)m=0時(shí),四邊形OACB的面積最小,最小值是4考點(diǎn):拋物線的標(biāo)準(zhǔn)方程及其幾何性質(zhì)、直線與圓錐曲線的位置關(guān)系、直線的斜率21、(1)橢圓方程為雙曲線方程為;(2)12【解析】(1)根據(jù)半焦距,設(shè)橢圓長(zhǎng)半軸為a,由離心率之比求出a,進(jìn)而求出橢圓短半軸的長(zhǎng)及雙曲線的虛半軸的長(zhǎng),寫出橢圓和雙曲線的標(biāo)準(zhǔn)方程;(2)由橢圓、雙曲線的定義求出與的長(zhǎng),在三角形中,利用余弦定理求出cos∠的值,進(jìn)一步求得sin∠的值,代入面積公式得答案試題解析:(1)設(shè)橢圓方程為,雙曲線方程為(a,b,m,n>0,且a>b),則解得:a=7,m=3,∴b=6,n=2,∴橢圓方程為雙曲線方程為(2)不妨

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論