2026屆重慶市南坪中學(xué)高二數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第1頁
2026屆重慶市南坪中學(xué)高二數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第2頁
2026屆重慶市南坪中學(xué)高二數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第3頁
2026屆重慶市南坪中學(xué)高二數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第4頁
2026屆重慶市南坪中學(xué)高二數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2026屆重慶市南坪中學(xué)高二數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.德國數(shù)學(xué)家米勒曾提出最大視角問題,這一問題一般的描述是:已知點A、B是的ON邊上的兩個定點,C是OM邊上的一個動點,當(dāng)C在何處時,最大?問題的答案是:當(dāng)且僅當(dāng)?shù)耐饨訄A與邊OM相切于點C時,最大.人們稱這一命題為米勒定理.已知點P、Q的坐標(biāo)分別是(2,0),(4,0),R是y軸正半軸上的一動點,當(dāng)最大時,點R的縱坐標(biāo)為()A.1 B.C. D.22.已知雙曲線的一條漸近線方程是,它的一個焦點在拋物線的準(zhǔn)線上,則雙曲線的方程為()A. B.C. D.3.已知數(shù)列中,且滿足,則()A.2 B.﹣1C. D.4.已知拋物線上的一點,則點M到拋物線焦點F的距離等于()A.6 B.5C.4 D.25.設(shè)a,b,c非零實數(shù),且,則()A. B.C. D.6.在四面體OABC中,,,,則與AC所成角的大小為()A.30° B.60°C.120° D.150°7.命題“若,則”的逆命題、否命題、逆否命題中是真命題的個數(shù)為()A.0個 B.1個C.2個 D.3個8.為了防控新冠病毒肺炎疫情,某市疾控中心檢測人員對外來入市人員進(jìn)行核酸檢測,人員甲、乙均被檢測.設(shè)命題為“甲核酸檢測結(jié)果為陰性”,命題為“乙核酸檢測結(jié)果為陰性”,則命題“至少有一位人員核酸檢測結(jié)果不是陰性”可表示為()A. B.C. D.9.已知函數(shù)(且,)的一個極值點為2,則的最小值為()A. B.C. D.710.函數(shù)圖象的一個對稱中心為()A. B.C. D.11.已知雙曲線的一個焦點到它的一條漸近線的距離為,則()A.5 B.25C. D.12.圓截直線所得弦的最短長度為()A.2 B.C. D.4二、填空題:本題共4小題,每小題5分,共20分。13.的展開式中的系數(shù)為_________14.一個質(zhì)地均勻的正四面體,其四個面涂有不同的顏色,拋擲這個正四面體一次,觀察它與地面接觸的顏色得到樣本空間{紅,黃,藍(lán),綠},設(shè)事件{紅,黃},事件{紅,藍(lán)},事件{黃,綠},則下列判斷:①E與F是互斥事件;②E與F是獨立事件;③F與G是對立事件;④F與G是獨立事件.其中正確判斷的序號是______(請寫出所有正確判斷的序號)15.若方程表示的曲線是雙曲線,則實數(shù)m的取值范圍是___;該雙曲線的焦距是___16.在1和9之間插入三個數(shù),使這五個數(shù)成等比數(shù)列,則中間三個數(shù)的積等于________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,四棱錐中,是邊長為2的正三角形,底面為菱形,且平面平面,,為上一點,滿足.(1)證明:;(2)求二面角的余弦值.18.(12分)設(shè)等差數(shù)列的前項和為,已知.(1)求數(shù)列的通項公式;(2)當(dāng)為何值時,最大,并求的最大值.19.(12分)△的內(nèi)角A,B,C的對邊分別為a,b,c.已知(1)求角B的大??;(2)若△不為鈍角三角形,且,,求△的面積20.(12分)如圖,四邊形ABCD是正方形,四邊形BEDF是菱形,平面平面.(1)證明:;(2)若,且平面平面BEDF,求平面ADE與平面CDF所成的二面角的正弦值.21.(12分)已知雙曲線,拋物線的焦點與雙曲線的一個焦點相同,點為拋物線上一點.(1)求雙曲線的焦點坐標(biāo);(2)若點到拋物線的焦點的距離是5,求的值.22.(10分)已知圓.(1)若不過原點的直線與圓相切,且直線在兩坐標(biāo)軸上的截距相等,求直線的方程;(2)求與圓和直線都相切的最小圓的方程.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】由題意,借助米勒定理,可設(shè)出坐標(biāo),表示出的外接圓方程,然后在求解點R的縱坐標(biāo).【詳解】因為點P、Q的坐標(biāo)分別是(2,0),(4,0)是x軸正半軸上的兩個定點,點R是y軸正半軸上的一動點,根據(jù)米勒定理,當(dāng)?shù)耐饨訄A與y軸相切時,最大,由垂徑定理可知,弦的垂直平分線必經(jīng)過的外接圓圓心,所以弦的中點為(3,0),故弦中點的橫坐標(biāo)即為的外接圓半徑,即,由垂徑定理可得,圓心坐標(biāo)為,故的外接圓的方程為,所以點R的縱坐標(biāo)為.故選:C.2、A【解析】根據(jù)雙曲線漸近線方程得a和b的關(guān)系,根據(jù)焦點在拋物線準(zhǔn)線上得c的值,結(jié)合a、b、c關(guān)系即可求解.【詳解】∵雙曲線的一條漸近線方程是,∴,∵準(zhǔn)線方程是,∴,∵,∴,,∴雙曲線標(biāo)準(zhǔn)方程為:.故選:A.3、C【解析】首先根據(jù)數(shù)列的遞推公式求出數(shù)列的前幾項,即可得到數(shù)列的周期性,即可得解;【詳解】解:因為且,所以,,,所以是周期為的周期數(shù)列,所以,故選:C4、B【解析】將點代入拋物線方程求出,再由拋物線的焦半徑公式可得答案.詳解】將點代入拋物線方程可得,解得則故選:B5、C【解析】對于A、B、D:取特殊值否定結(jié)論;對于C:利用作差法證明.【詳解】對于A:取符合已知條件,但是不成立.故A錯誤;對于B:取符合已知條件,但是,所以不成立.故B錯誤;對于C:因為,所以.故C正確;對于D:取符合已知條件,但是,所以不成立.故D錯誤;故選:C.6、B【解析】以為空間的一個基底,求出空間向量求的夾角即可判斷作答.【詳解】在四面體OABC中,不共面,則,令,依題意,,設(shè)與AC所成角的大小為,則,而,解得,所以與AC所成角的大小為.故選:B7、B【解析】先判斷出原命題和逆命題的真假,進(jìn)而根據(jù)互為逆否的兩個命題同真或同假最終得到答案.【詳解】“若a=0,則ab=0”,命題為真,則其逆否命題也為真;逆命題為:“若ab=0,則a=0”,顯然a=1,b=0時滿足ab=0,但a≠0,即逆命題為假,則否命題也為假.故選:B.8、D【解析】表示出和,直接判斷即可.【詳解】命題為“甲核酸檢測結(jié)果為陰性”,則命題為“甲核酸檢測結(jié)果不是陰性”;命題為“乙核酸檢測結(jié)果為陰性”,則命題為“乙核酸檢測結(jié)果不是陰性”.故命題“至少有一位人員核酸檢測結(jié)果不是陰性”可表示為.故選D.9、B【解析】求出函數(shù)的導(dǎo)數(shù),由給定極值點可得a與b的關(guān)系,再借助“1”的妙用求解即得.【詳解】對求導(dǎo)得:,因函數(shù)的一個極值點為2,則,此時,,,因,即,因此,在2左右兩側(cè)鄰近的區(qū)域值一正一負(fù),2是函數(shù)的一個極值點,則有,又,,于是得,當(dāng)且僅當(dāng),即時取“=”,所以的最小值為.故選:B10、D【解析】要求函數(shù)圖象的一個對稱中心的坐標(biāo),關(guān)鍵是求函數(shù)時的的值;令,根據(jù)余弦函數(shù)圖象性質(zhì)可得,此時可求出,然后對進(jìn)行取值,進(jìn)而結(jié)合選項即可得到答案.【詳解】解:令,則解得,即,圖象的對稱中心為,令,即可得到圖象的一個對稱中心為故選:D【點睛】本題考查三角函數(shù)的對稱中心,正弦函數(shù)的對稱中心為,余弦函數(shù)的對稱中心為.11、B【解析】由漸近線方程得到,焦點坐標(biāo)為,漸近線方程為:,利用點到直線距離公式即得解【詳解】由題意,雙曲線故焦點坐標(biāo)為,漸近線方程為:焦點到它的一條漸近線的距離為:解得:故選:B12、A【解析】由題知直線過定點,且在圓內(nèi),進(jìn)而求解最值即可.【詳解】解:將直線化為,所以聯(lián)立方程得所以直線過定點將化為標(biāo)準(zhǔn)方程得,即圓心為,半徑為,由于,所以點在圓內(nèi),所以點與圓圓心間的距離為,所以圓截直線所得弦的最短長度為故選:A二、填空題:本題共4小題,每小題5分,共20分。13、4【解析】將代數(shù)式變形為,寫出展開式的通項,令的指數(shù)為,求得參數(shù)的值,代入通項即可求解.【詳解】由展開式的通項為,令,得展開式中的系數(shù)為.由展開式的通項為,令,得展開式中的系數(shù)為.所以的展開式中的系數(shù)為.故答案為:.14、②③【解析】由對立和互斥事件的定義判斷①③;由獨立事件的性質(zhì)判斷②④.【詳解】{紅},則E與F不是互斥事件;且,則F與G是對立事件;,則E與F是獨立事件;,,則F與G不是獨立事件故答案為:②③15、①.②.2【解析】由題意可得,由此可解得m的范圍,進(jìn)一步將方程化為標(biāo)準(zhǔn)方程即可求得焦距【詳解】由所表示的曲線是雙曲線,可知,解得,當(dāng)時,方程可變?yōu)椋?,此時雙曲線焦距為,當(dāng)時,m不存在,不合題意;故雙曲線的焦距:故答案為:;16、27【解析】設(shè)公比為,利用已知條件求出,然后根據(jù)通項公式可求得答案【詳解】設(shè)公比為,插入的三個數(shù)分別為,因為,所以,得,所以,故答案為:27三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2).【解析】(1)設(shè)為中點,連接,根據(jù),證明平面得到答案.(2)以為原點,,,分別為,,軸建立空間直角坐標(biāo)系,計算各點坐標(biāo),計算平面和平面的法向量,根據(jù)向量夾角公式計算得到答案.【詳解】(1)設(shè)為中點,連接,,∵,∴,又∵底面四邊形為菱形,,∴為等邊三角形,∴,又∴,,平面,∴平面,而平面,∴.(2)∵平面平面,平面平面,,∴平面以為原點,,,分別為,,軸建立空間直角坐標(biāo)系,則,,,,,,由,,,即,∴,,,設(shè)為平面的法向量,則由,令,得,,∴,設(shè)為平面的法向量,則由,令,得,,∴,設(shè)二面角的平面角為,則,∴二面角的的余弦值為.【點睛】本題考查了線線垂直,二面角,意在考查學(xué)生的計算能力和空間想象能力,建立空間直角坐標(biāo)系是解題的關(guān)鍵.18、(1)(2)n為6或7;126【解析】(1)設(shè)等差數(shù)列的公差為d,利用等差數(shù)列的通項公式求解;(2)由,利用二次函數(shù)的性質(zhì)求解.【小問1詳解】解:設(shè)等差數(shù)列的公差為d,因為.所以,解得,所以;【小問2詳解】,當(dāng)或7時,最大,的最大值是126.19、(1)或;(2).【解析】(1)根據(jù)正弦定理邊角關(guān)系可得,再由三角形內(nèi)角的性質(zhì)求其大小即可.(2)由(1)及題設(shè)有,應(yīng)用余弦定理求得、,最后利用三角形面積公式求△的面積【小問1詳解】由正弦定理得:,又,所以,又B為△的一個內(nèi)角,則,所以或;【小問2詳解】由△不為鈍角三角形,即,又,,由余弦定理,,得(舍去負(fù)值),則∴20、(1)證明見解析;(2).【解析】(1)連接交于點,連接,要證明,只需證明平面即可;(2)以D為原點建系,分別求出平面與平面的法向量,再利用向量的夾角公式計算即可得到答案.【詳解】(1)證明:如圖,連接交于點,連接四邊形為正方形,,且為的中點又四邊形為菱形,平面平面又平面OAE.(2)解:如圖,建立空間直角坐標(biāo)系,不妨設(shè),則,,則由(1)得又平面平面,平面平面,平面ABCD,故,同理,設(shè)為平面的法向量,為平面的法向量,則故可取,同理故可取,所以設(shè)平面與平面所成的二面角為,則,所以平面與平面所成的二面角的正弦值為21、(1);(2).【解析】(1)根據(jù)雙曲線的方程求出即得雙曲線的焦點坐標(biāo);(2)先求出的值,再解方程得解.【詳解】(1)因為雙曲線的方程為,所以.所以.所以.所以雙曲線的焦點坐標(biāo)分別為.(2)因為拋物線的焦點與雙曲線的一個焦點相同,所以拋物線的焦點坐標(biāo)是(2,0),所以.因為點為拋物線上一點,所以點到拋物線的焦點的距離等于點到拋物線的準(zhǔn)線的距離.因為點到拋物線的焦點的距離是5,即,所以.【點睛】本題主要考查雙曲線的焦點坐標(biāo)的求法,考查拋物線的定義和幾何性質(zhì),意在考查學(xué)生對這些知識的理解掌握水平.22、(1)或;(2).【解析】(1)根據(jù)題意設(shè)出直線的方程,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論