版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
第=page11頁(yè),共=sectionpages11頁(yè)廣東省潮州市2026屆高三上學(xué)期期末教學(xué)質(zhì)量檢測(cè)數(shù)學(xué)試題一、單選題:本題共8小題,每小題5分,共40分。在每小題給出的選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知集合A=xx2?x?2≤0,B=xA.0,2 B.0,2 C.?1,2 D.0,12.已知i為虛數(shù)單位,復(fù)數(shù)z=m2?2m+mi(m∈R)是純虛數(shù),則m=A.2或0 B.2 C.0 D.?23.已知向量a=(1,1),b=(?1,3),則向量b在向量a上的投影向量為(
)A.(1,1) B.(?1,1) C.(0,1) D.(0,0)4.已知函數(shù)f(x)=x2?2x,x<02x,x≥0A.?2 B.1 C.5 D.75.正方體ABCD?A1B1C1D1中,點(diǎn)M,N分別為正方形A1BA.0 B.34 C.126.若1,a1,a2,4成等差數(shù)列;1,A.?12 B.12 C.±7.從5名醫(yī)生中選擇4人參加為期三天的社區(qū)志愿服務(wù)活動(dòng),這三天中,有一天安排兩人,另外兩天各安排一人,共有(????)種安排方法A.180 B.90 C.36 D.308.過(guò)拋物線C:x2=4y焦點(diǎn)F的直線與拋物線交于A,B兩點(diǎn),過(guò)點(diǎn)A作C的切線l,交y軸于點(diǎn)M,過(guò)點(diǎn)B作l的平行線交y軸于點(diǎn)N,則MN的最小值是A.8 B.6 C.5 D.4二、多選題:本題共3小題,共18分。在每小題給出的選項(xiàng)中,有多項(xiàng)符合題目要求。9.某研究所研究耕種深度x(單位:cm)與水稻每公頃產(chǎn)量y(單位:t)的關(guān)系,所得數(shù)據(jù)資料如下表:耕種深度x/cm810121416每公頃產(chǎn)量y/t6.07.57.89.29.5經(jīng)計(jì)算可知每公頃產(chǎn)量y與耕種深度x的線性回歸方程為y=0.435x+aA.每公頃產(chǎn)量與耕種深度呈負(fù)相關(guān) B.耕種深度的平均數(shù)為12
C.每公頃產(chǎn)量的平均數(shù)為7.8 D.a10.如圖,平行六面體ABCD?A1B1C1D1的體積為6,點(diǎn)P為線段AA.三棱錐P?C1CD B.三棱錐P?B1D1D11.已知f(x)=x3+ax2+bx?2,若不等式f(x)<2A.ab=?2
B.函數(shù)f(x)的對(duì)稱(chēng)中心為(?1,0)
C.過(guò)點(diǎn)(?1,0)可作一條直線與曲線y=f(x)相切
D.當(dāng)?2<x<?12三、填空題:本題共3小題,每小題5分,共15分。12.已知tan(α?π4)=3,則sin13.記O為坐標(biāo)原點(diǎn),若直線y=kx與圓x2+y2?2x?3=0交于A,B兩點(diǎn),且|OA|=2,則14.若三個(gè)非零且互不相等的實(shí)數(shù)x1,x2,x3成等差數(shù)列且滿足1x1+1x2=2x3四、解答題:本題共5小題,共77分。解答應(yīng)寫(xiě)出文字說(shuō)明,證明過(guò)程或演算步驟。15.(本小題13分)一個(gè)口袋中有3個(gè)紅球,4個(gè)白球,這7個(gè)小球除顏色外其余均相同.(1)從中不放回地摸球,每次摸2個(gè)球,摸到的2個(gè)球中至少有1個(gè)紅球則中獎(jiǎng),求摸兩次恰好只有第2次中獎(jiǎng)的概率;(2)每次同時(shí)摸2個(gè)球,并放回,摸到的2個(gè)球中至少有1個(gè)紅球則中獎(jiǎng),連續(xù)摸4次,求中獎(jiǎng)次數(shù)X的分布列及數(shù)學(xué)期望.16.(本小題15分)在△ABC中,角A,B,C的對(duì)邊a,b,c成公差為2的等差數(shù)列.(1)若△ABC為銳角三角形,求a的取值范圍;(2)若7sinA=3sinC17.(本小題15分)
如圖,在四棱錐P?ABCD中,底面ABCD是邊長(zhǎng)為2的正方形,M,N分別為BC,PD中點(diǎn).
(1)求證:MN//平面PAB;
(2)若PA=PB=5,平面PAB⊥平面ABCD,求平面AMN與平面DMN夾角的余弦值.18.(本小題17分)已知橢圓E:x2a2+y2b2=1(a>b>0)的兩個(gè)焦點(diǎn)為F(1)求橢圓E的標(biāo)準(zhǔn)方程;(2)過(guò)點(diǎn)Q(?4,0),且斜率不為0的直線l與E相交于兩點(diǎn)A,B(A在B的左側(cè)),設(shè)直線F1A,F(xiàn)1B的斜率分別為?①求證:k1k2為定值;
?②設(shè)直線F1B,F(xiàn)219.(本小題17分)已知函數(shù)f(x)=(a+2)x?lnx(1)當(dāng)a=2時(shí),求曲線y=f(x)在x=1處的切線方程;(2)討論函數(shù)f(x)的單調(diào)性;(3)已知曲線y=af(x)x與曲線y=(a+1)2?參考答案1.C
2.B
3.A
4.B
5.C
6.A
7.A
8.D
9.BD
10.ACD
11.BCD
12.?413.3214.1012
15.解:(1)設(shè)“摸2次恰好第2次中獎(jiǎng)”為事件A,則P(A)=C42(C32+C31C21)C72C52=935.
所以摸2次恰好只有第2次中獎(jiǎng)的概率為935.
(2)設(shè)“每次同時(shí)摸2個(gè)球,恰好中獎(jiǎng)”為事件B,則P(B)=C32+C3X01234P161606001000625隨機(jī)變量X的數(shù)學(xué)期望E(X)=0×16716.解:(1)因?yàn)閍,b,c是公差為2的等差數(shù)列,
所以b=a+2,c=a+4,
所以a+(a+2)>(a+4),則a>2,
其次,因?yàn)椤鰽BC為銳角三角形,
所以最大角C∈(0,π2),
所以cosC>0,則a2+b2?c22ab>0,
所以c2<a2+b2,即a2?4a?12>0,解得a>6;
(2)因?yàn)?sinA=317.(1)證明:取PA中點(diǎn)E,連接BE,NE,
∵△PAD中,E,N分別為PA,PD中點(diǎn),
∴EN//AD且EN=12AD,
又正方形ABCD中,M為BC中點(diǎn),
∴BM//AD,BM=12BC=12AD,
∴BM//EN且BM=EN,
∴四邊形BMNE為平行四邊形,∴BE//MN,
∵M(jìn)N?平面PAB,BE?平面PAB,
∴MN//平面PAB;
(2)解:取AB中點(diǎn)為O,CD中點(diǎn)為F,連接PO,OF,
∵△PAB中,PA=PB,∴PO⊥AB,
∵平面PAB⊥平面ABCD,PO?平面PAB,平面PAB∩平面ABCD=AB,
∴PO⊥平面ABCD,
又四邊形ABCD為正方形,∴OF⊥AB,
以O(shè)B,OF,OP所在直線分別為x,y,z軸,
建立如圖所示的空間直角坐標(biāo)系,
∵PA=PB=5,AB=2,
∴A(?1,0,0),D(?1,2,0),M(1,1,0),N(?12,1,1),
∴AM=(2,1,0),DM=(2,?1,0),MN=(?32,0,1),
設(shè)平面AMN的法向量為n1=(x1,y1,z1),
則由n1⊥AM,n1⊥AN,可得n1?AM=0n1?MN=0,即2x18.解:(1)設(shè)橢圓的焦距為2c,則c=1,
又12?2c?b=3,則b=3,a2=b2+c2=4,得a=2
所以橢圓E的標(biāo)準(zhǔn)方程為x24+y23=1.
(2)?①由Q(?4,0),直線l的斜率存在且不為0.
設(shè)直線l的方程為x=my?4,
A(x1,y1),B(x2,y2),x1<0,
聯(lián)立x24+y23=1x=my?4得(3m2+4)y2?24my+36=0,
則Δ>0,y1+y2=24m3m2+4,y1y2=363m2+4
所以my1y2=32(y1+y2).
又F1(?1,0),所以k1=y1x1+1,19.解:(1)a=2,f(x)=4x?lnx,f′(x)=4?1x,f(1)=4,即切點(diǎn)坐標(biāo)(1,4),切線斜率k=f′(1)=3,
故所求切線方程y?4=3(x?1),即3x?y+1=0.
(2)∵f(x)=(a+2)x?lnx,∴f′(x)=a+2?1x=(a+2)x?1x,x>0.
當(dāng)a+2≤0,即a≤?2時(shí),f′(x)<0,f(x)在(0,+∞)上單調(diào)遞減,
當(dāng)a+2>0,即a>?2時(shí),在(0,12+a)上,f′(x)<0,在(12+a,+∞)上f′(x)>0,
f(x)在(0,12+a)上單調(diào)遞減,在(12+a,+∞)上單調(diào)遞增.
綜上,a≤?2時(shí),f(x)在(0,+∞)上單調(diào)遞減;
a>?2時(shí),f(x)在(0,12+a)上單調(diào)遞減,在(12+a,+∞)上單調(diào)遞增.
(3)因?yàn)榍€y=af(x)x與曲線y=(a+1)2?ex?1有兩個(gè)不同的交點(diǎn),
所以方程ex?1+af(x)x=(a+1)2有兩個(gè)不同實(shí)根,等價(jià)于方程xex?1?alnx?x=0有兩個(gè)不同實(shí)根,
設(shè)g(x)=xex?1?alnx?x=(ex?1?1)x?alnx,則g′(x)=(x+1)ex?1?ax?1且g′(1)=1?a,
當(dāng)a≤0時(shí),x∈(0,1)時(shí),g(x)<0,x∈(1,+∞)時(shí),g(x)>0,此時(shí)函數(shù)g(x)只有一個(gè)零點(diǎn)x=1,方程只有一個(gè)根,不符合題意;
當(dāng)a>0時(shí),g′(x)=(x+1)ex?1?1?ax在(0,+∞)上單調(diào)遞增,
當(dāng)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年機(jī)械設(shè)計(jì)與制造專(zhuān)業(yè)技能認(rèn)證題庫(kù)
- 2026年物流管理專(zhuān)業(yè)考試題集與答案詳解
- 全季的全天房和鐘點(diǎn)房加收制度
- Excel表格基本操作培訓(xùn)
- 供應(yīng)室消毒制度
- 從業(yè)人員安全管理及安全教育培訓(xùn)制度
- 物流行業(yè)市場(chǎng)需求探究
- 產(chǎn)投公司安全生產(chǎn)制度
- 民間藝術(shù)采集與研究承諾書(shū)6篇
- 員工培訓(xùn)計(jì)劃與實(shí)施方案模板技能提升工具
- 危險(xiǎn)化學(xué)品安全法解讀
- 廣東省佛山市南海區(qū)2025-2026學(xué)年上學(xué)期期末八年級(jí)數(shù)學(xué)試卷(含答案)
- 放射應(yīng)急演練及培訓(xùn)制度
- 儲(chǔ)能技術(shù)培訓(xùn)課件模板
- 2026元旦主題班會(huì):馬年猜猜樂(lè)新春祝福版 教學(xué)課件
- 光伏收購(gòu)合同范本
- 2025海洋水下機(jī)器人控制系統(tǒng)行業(yè)市場(chǎng)需求及發(fā)展趨勢(shì)分析投資評(píng)估規(guī)劃報(bào)告
- 物流金融管理培訓(xùn)課件
- 微專(zhuān)題:突破語(yǔ)病題+2026屆高考語(yǔ)文二輪復(fù)習(xí)
- 電梯線路知識(shí)培訓(xùn)內(nèi)容課件
- 羽毛球裁判二級(jí)考試題庫(kù)及答案
評(píng)論
0/150
提交評(píng)論