版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
貴州省畢節(jié)市織金第一中學(xué)2026屆高二上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.直線x﹣y+3=0的傾斜角是()A.30° B.45°C.60° D.150°2.已知點,動點P滿足,則點P的軌跡為()A橢圓 B.雙曲線C.拋物線 D.圓3.已知橢圓的左、右焦點分別為,,直線過且與橢圓相交于不同的兩點,、不在軸上,那么△的周長()A.是定值B.是定值C.不是定值,與直線的傾斜角大小有關(guān)D.不是定值,與取值大小有關(guān)4.已知橢圓方程為:,則其離心率為()A. B.C. D.5.?dāng)?shù)列滿足且,則的值是()A.1 B.4C.-3 D.66.已知點F為拋物線C:的焦點,點,若點Р為拋物線C上的動點,當(dāng)取得最大值時,點P恰好在以F,為焦點的橢圓上,則該橢圓的離心率為()A. B.C. D.7.命題“,使”的否定是()A.,有 B.,有C.,使 D.,使8.的展開式中的系數(shù)是()A.1792 B.C.448 D.9.若則()A.?2 B.?1C.1 D.210.已知函數(shù),則()A.0 B.1C.2 D.11.已知點是拋物線的焦點,點為拋物線上的任意一點,為平面上點,則的最小值為A.3 B.2C.4 D.12.已知角的終邊經(jīng)過點,則,的值分別為A., B.,C., D.,二、填空題:本題共4小題,每小題5分,共20分。13.如圖所示,二面角為,是棱上的兩點,分別在半平面內(nèi),且,,,,,則的長______14.在一平面直角坐標(biāo)系中,已知,現(xiàn)沿x軸將坐標(biāo)平面折成60°的二面角,則折疊后A,B兩點間的距離為___________.15.設(shè)、分別是橢圓的左、右焦點.若是該橢圓上的一個動點,則的最大值為_____16.已知球的半徑為3,則該球的體積為_________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知公差不為零的等差數(shù)列中,,且,,成等比數(shù)列.(Ⅰ)求數(shù)列的通項公式;(Ⅱ)若,求數(shù)列的前項和.18.(12分)設(shè)函數(shù)(Ⅰ)求的單調(diào)區(qū)間;(Ⅱ)若,為整數(shù),且當(dāng)時,恒成立,求的最大值.(其中為的導(dǎo)函數(shù).)19.(12分)在平面直角坐標(biāo)系中,已知圓,點P在圓上,過點P作x軸的垂線,垂足為是的中點,當(dāng)P在圓M上運動時N形成的軌跡為C(1)求C的軌跡方程;(2)若點,試問在x軸上是否存在點M,使得過點M的動直線交C于兩點時,恒有?若存在,求出點M的坐標(biāo);若不存在,請說明理由20.(12分)如圖,四棱錐中,底面是邊長為2的正方形,,,且,為的中點(1)求平面與平面夾角的余弦值;(2)在線段上是否存在點,使得點到平面的距離為?若存在,確定點的位置;若不存在,請說明理由21.(12分)已知拋物線:()的焦點為,點在上,點在的內(nèi)側(cè),且的最小值為(1)求的方程;(2)過點的直線與拋物線交于不同的兩點,,直線,(為坐標(biāo)原點)分別交直線于點,記直線,,的斜率分別為,,,若,求的值22.(10分)在①,②,③,三個條件中任選一個,補充在下面的問題中,并解答.設(shè)數(shù)列是公比大于0的等比數(shù)列,其前項和為,數(shù)列是等差數(shù)列,其前項和為.已知,,,_____________.(1)請寫出你選擇條件的序號____________;并求數(shù)列和的通項公式;(2)求和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】先求斜率,再求傾斜角即可【詳解】解:直線的斜截式方程為,∴直線的斜率,∴傾斜角,故選:C【點睛】本題主要考查直線的傾斜角與斜率,屬于基礎(chǔ)題2、A【解析】根據(jù)橢圓的定義即可求解.【詳解】解:,故,又,根據(jù)橢圓的定義可知:P的軌跡為橢圓.故選:A.3、B【解析】由直線過且與橢圓相交于不同的兩點,,且,為橢圓兩焦點,根據(jù)橢圓的定義即可得△的周長為,則答案可求【詳解】橢圓,橢圓的長軸長為,∴△的周長為故選:B4、B【解析】根據(jù)橢圓的標(biāo)準(zhǔn)方程,確定,計算離心率即可.【詳解】由知,,,,即,故選:B5、A【解析】根據(jù)題意,由于,可知數(shù)列是公差為-3的等差數(shù)列,則可知d=-3,由于=,故選A6、D【解析】過點P引拋物線準(zhǔn)線的垂線,交準(zhǔn)線于D,根據(jù)拋物線的定義可知,記,根據(jù)題意,當(dāng)最小,即直線與拋物線相切時滿足題意,進(jìn)而解出此時P的坐標(biāo),解得答案即可.【詳解】如圖,易知點在拋物線C的準(zhǔn)線上,作PD垂直于準(zhǔn)線,且與準(zhǔn)線交于點D,記,則.由拋物線定義可知,.由圖可知,當(dāng)取得最大值時,最小,此時直線與拋物線相切,設(shè)切線方程為,代入拋物線方程并化簡得:,,方程化為:,代入拋物線方程解得:,即,則,.于是,橢圓的長軸長,半焦距,所以橢圓的離心率.故選:D.7、B【解析】根據(jù)特稱命題的否定是全稱命題即可得正確答案【詳解】存在量詞命題的否定,只需把存在量詞改成全稱量詞,并把后面的結(jié)論否定,所以“,使”的否定為“,有”,故選:B.8、D【解析】根據(jù)二項式展開式的通項公式計算出正確答案.【詳解】的展開式中,含的項為.所以的系數(shù)是.故選:D9、B【解析】分子分母同除以,化弦為切,代入即得結(jié)果.【詳解】由題意,分子分母同除以,可得.故選:B.10、C【解析】對函數(shù)f(x)求導(dǎo)即可求得結(jié)果.【詳解】函數(shù),則,,故選C【點睛】本題考查正弦函數(shù)的導(dǎo)數(shù)的應(yīng)用,屬于簡單題.11、A【解析】作垂直準(zhǔn)線于點,根據(jù)拋物線的定義,得到,當(dāng)三點共線時,的值最小,進(jìn)而可得出結(jié)果.【詳解】如圖,作垂直準(zhǔn)線于點,由題意可得,顯然,當(dāng)三點共線時,的值最小;因為,,準(zhǔn)線,所以當(dāng)三點共線時,,所以.故選A【點睛】本題主要考查拋物線上任一點到兩定點距離的和的最值問題,熟記拋物線的定義與性質(zhì)即可,屬于??碱}型.12、C【解析】利用任意角的三角函數(shù)的定義:,,,代入計算即可得到答案【詳解】由于角的終邊經(jīng)過點,則,,(為坐標(biāo)原點),所以由任意角的三角函數(shù)的定義:,.故答案選C【點睛】本題考查任意角的三角函數(shù)的定義,解決此類問題的關(guān)鍵是掌握牢記三角函數(shù)定義并能夠熟練應(yīng)用,屬于基礎(chǔ)題二、填空題:本題共4小題,每小題5分,共20分。13、【解析】推導(dǎo)出,從而,結(jié)合,,,能求出的長【詳解】二面角為,是棱上的兩點,分別在半平面、內(nèi),且所以,所以,,,的長故答案為【點睛】本題主要考查空間向量的運算法則以及數(shù)量積的運算法則,意在考查靈活應(yīng)用所學(xué)知識解答問題的能力,是中檔題14、【解析】平面直角坐標(biāo)系中,沿軸將坐標(biāo)平面折成的二面角后,在平面上的射影為,作軸,交軸于點,通過用向量的數(shù)量積轉(zhuǎn)化求解距離即可.【詳解】在直角坐標(biāo)系中,已知,現(xiàn)沿軸將坐標(biāo)平面折成的二面角后,在平面上的射影為,作軸,交軸于點,所以,所以,所以,故答案為:15、4【解析】設(shè),寫出、的坐標(biāo),利用向量數(shù)量積的坐標(biāo)表示有,根據(jù)橢圓的有界性即可求的最大值.【詳解】由題意知:,,若,∴,,∴,而,則,而,∴當(dāng)時,.故答案為:【點睛】關(guān)鍵點點睛:利用向量數(shù)量積的坐標(biāo)表示及橢圓的有界性求最值.16、【解析】根據(jù)球的體積公式計算可得;【詳解】解:因為球的半徑,所以球的體積;故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(Ⅰ)將數(shù)列中的項用和表示,根據(jù)等比數(shù)列的性質(zhì)可得到關(guān)于的一元二次方程可求得的值,即可得到數(shù)列的通項公式;(Ⅱ)根據(jù)(Ⅰ)可求得的通項公式,用分組求和法可得其前項和.試題解析:(Ⅰ)設(shè)等差數(shù)列的公差為,因,且,,成等比數(shù)列,即,,成等比數(shù)列,所以有,即,解得或(舍去),所以,,數(shù)列的通項公式為.(Ⅱ)由(Ⅰ)知,所以.點睛:本題主要考查了等差數(shù)列,等比數(shù)列的概念,以及數(shù)列的求和,屬于高考中??贾R點,難度不大;常見的數(shù)列求和的方法有公式法即等差等比數(shù)列求和公式,分組求和類似于,其中和分別為特殊數(shù)列,裂項相消法類似于,錯位相減法類似于,其中為等差數(shù)列,為等比數(shù)列等.18、(Ⅰ)答案見解析;(Ⅱ).【解析】(Ⅰ)的定義域為,,分和兩種情況解不等式和即可得單調(diào)遞增區(qū)間和單調(diào)遞減區(qū)間;(Ⅱ)由題意可得對于恒成立,分離可得,令,只需,利用導(dǎo)數(shù)求最小值即可求解.【詳解】(Ⅰ)函數(shù)的定義域為,當(dāng)時,對于恒成立,此時函數(shù)在上單調(diào)遞增;當(dāng)時,由可得;由可得;此時在上單調(diào)遞減,在上單調(diào)遞增;綜上所述:當(dāng)時,函數(shù)的單調(diào)遞增區(qū)間為,當(dāng)時,單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為,(Ⅱ)若,由可得,因為,所以,所以所以對于恒成立,令,則,,令,則對于恒成立,所以在單調(diào)遞增,因為,,所以在上存在唯一零點,即,可得:,當(dāng)時,,則,當(dāng)時,,則,所以在上單調(diào)遞減,在上單調(diào)遞增,所以,因為,所以的最大值為.【點睛】方法點睛:利用導(dǎo)數(shù)研究函數(shù)單調(diào)性的方法:(1)確定函數(shù)的定義域;求導(dǎo)函數(shù),由(或)解出相應(yīng)的的范圍,對應(yīng)的區(qū)間為的增區(qū)間(或減區(qū)間);(2)確定函數(shù)的定義域;求導(dǎo)函數(shù),解方程,利用的根將函數(shù)的定義域分為若干個子區(qū)間,在這些子區(qū)間上討論的正負(fù),由符號確定在子區(qū)間上的單調(diào)性.19、(1);(2)不存在,理由見解析.【解析】(1)設(shè),根據(jù)中點坐標(biāo)公式用N的坐標(biāo)表示P的坐標(biāo),將P的坐標(biāo)代入圓M的方程化簡即可得N的軌跡方程;(2)假設(shè)存在,設(shè)M為(m,0),設(shè)直線l斜率為k,表示其方程,l方程和橢圓方程聯(lián)立,根據(jù)韋達(dá)定理得根與系數(shù)關(guān)系,由,得,代入根與系數(shù)的關(guān)系求k與m關(guān)系即可判斷.【小問1詳解】設(shè),因為N為的中點,,又P點在圓上,,即C軌跡方程為;【小問2詳解】不存在滿足條件的點M,理由如下:假設(shè)存在滿足條件的點M,設(shè)點M的坐標(biāo)為,直線的斜率為k,則直線的方程為,由消去y并整理,得,設(shè),則由,得,即,將代入上式并化簡,得將式代入上式,有,解得,而,求得點M在橢圓外,若與橢圓無交點不滿足條件,所以不存在這樣的點M【點睛】本題關(guān)鍵是由得,將幾何關(guān)系轉(zhuǎn)化為代數(shù)關(guān)系進(jìn)行計算.20、(1)(2)存在,點為線段的靠近點的三等分點【解析】(1)根據(jù)題意證得平面,進(jìn)而證得平面,得到平面,以點為坐標(biāo)原點,,,所在直線分別為軸、軸和軸建立空間直角坐標(biāo)系,求得平面和平面的法向量,結(jié)合向量的夾角公式,即可求解;(2)設(shè)點,求得平面的法向量為,結(jié)合向量的距離公式列出方程,求得的值,即可得到答案.【小問1詳解】解:因為四邊形為正方形,則,,由,,,所以平面,因為平面,所以,又由,,,所以平面,又因為平面,所以,因為且平面,所以平面,由平面,且,不妨以點為坐標(biāo)原點,,,所在直線分別為軸、軸和軸建立空間直角坐標(biāo)系,如圖所示,則,,,,可得,,,設(shè)平面的法向量為,則,取,可得,所以,易得平面的法向量為,則,由平面與平面夾角為銳角,所以平面與平面夾角的余弦值【小問2詳解】解:設(shè)點,可得,,設(shè)平面的法向量為,則,取,可得,所以,所以點到平面的距離為,解得,即或因為,所以故當(dāng)點為線段的靠近點的三等分點時,點到平面的距離為.21、(1)(2)【解析】(1)先求出拋物線的準(zhǔn)線,作于由拋物線的定義,可得,從而當(dāng)且僅當(dāng),,三點共線時取得最小,得出答案.(2)設(shè),,設(shè):與拋物線方程聯(lián)立,得出韋達(dá)定理,設(shè)出直線的方程分別與直線的方程聯(lián)立得出點的坐標(biāo),進(jìn)一步得到,的表達(dá)式,由條件可得答案.【小問1詳解】的準(zhǔn)線為:,作于,則,所以,因為點在的內(nèi)側(cè),所以當(dāng)且僅當(dāng),,三點共線時取得最小值,所以,解得,所以的方程為【小問2詳解】由題意可知的斜率一定存在,且不為0,設(shè):(),聯(lián)立消去得,由,即,得,結(jié)合,知記,,則直線的方程為由得易知,所以同理可得由,可得,即,化簡得,結(jié)合,解得22、(1)選①,,;選②
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 湖北省襄陽市2025-2026學(xué)年八年級上學(xué)期期末語文試題(有解析)
- 民治水電站“9·10”高位滑坡220kV送出工程建設(shè)項目環(huán)境影響報告表
- 甘肅省審計廳直屬事業(yè)單位招聘考試真題2025
- 2025年銅仁市國企考試真題
- 2026北京大學(xué)國家衛(wèi)生健康委員會神經(jīng)科學(xué)重點實驗室主任招聘1人備考題庫含答案詳解
- 2026中國科學(xué)院生物物理研究所于洋研究組科研助理招聘1人備考題庫及答案詳解一套
- 2025年汽車維修技師技能提升方案報告
- 2026年無人駕駛行業(yè)創(chuàng)新應(yīng)用報告
- 高中音樂課程中的民族音樂教育研究教學(xué)研究課題報告
- 志愿消防隊組織管理制度
- 拆除爆破施工方案
- 2025年接觸網(wǎng)覆冰舞動處置預(yù)案
- 剪映電腦剪輯課件
- 人教版七年級英語上冊全冊語法知識點梳理
- 母乳喂養(yǎng)的新進(jìn)展
- 2025年浙江省中考科學(xué)試題卷(含答案解析)
- 要素式民事起訴狀(房屋租賃合同糾紛)
- 急性呼吸窘迫綜合征病例討論
- DB11∕T 510-2024 公共建筑節(jié)能工程施工質(zhì)量驗收規(guī)程
- 英語滬教版5年級下冊
- T/CPFIA 0005-2022含聚合態(tài)磷復(fù)合肥料
評論
0/150
提交評論