2026屆興安市重點(diǎn)中學(xué)高二上數(shù)學(xué)期末復(fù)習(xí)檢測試題含解析_第1頁
2026屆興安市重點(diǎn)中學(xué)高二上數(shù)學(xué)期末復(fù)習(xí)檢測試題含解析_第2頁
2026屆興安市重點(diǎn)中學(xué)高二上數(shù)學(xué)期末復(fù)習(xí)檢測試題含解析_第3頁
2026屆興安市重點(diǎn)中學(xué)高二上數(shù)學(xué)期末復(fù)習(xí)檢測試題含解析_第4頁
2026屆興安市重點(diǎn)中學(xué)高二上數(shù)學(xué)期末復(fù)習(xí)檢測試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費(fèi)閱讀

付費(fèi)下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2026屆興安市重點(diǎn)中學(xué)高二上數(shù)學(xué)期末復(fù)習(xí)檢測試題注意事項(xiàng)1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.過點(diǎn),且斜率為2的直線方程是A. B.C. D.2.2019年湖南等8省公布了高考改革綜合方案將采取“”模式即語文、數(shù)學(xué)、英語必考,考生首先在物理、歷史中選擇1門,然后在思想政治、地理、化學(xué)、生物中選擇2門,一名同學(xué)隨機(jī)選擇3門功課,則該同學(xué)選到歷史、地理兩門功課的概率為()A. B.C. D.3.下列命題中正確的個(gè)數(shù)為()①若向量,與空間任意向量都不能構(gòu)成基底,則;②若向量,,是空間一組基底,則,,也是空間的一組基底;③為空間一組基底,若,則;④對于任意非零空間向量,,若,則A.1 B.2C.3 D.44.焦點(diǎn)坐標(biāo)為,(0,4),且長半軸的橢圓方程為()A. B.C. D.5.如果直線與直線垂直,那么的值為()A. B.C. D.26.如圖,已知直線AO垂直于平面,垂足為O,BC在平面內(nèi),AB與平面所成角的大小為,,,則異面直線AB與OC所成角的余弦值為()A. B.C. D.7.下列關(guān)于斜二測畫法所得直觀圖的說法中正確的有()①三角形的直觀圖是三角形;②平行四邊形的直觀圖是平行四邊形;③菱形的直觀圖是菱形;④正方形的直觀圖是正方形.A.① B.①②C.③④ D.①②③④8.“”是“”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.即不充分也不必要條件9.已知橢圓與圓在第二象限的交點(diǎn)是點(diǎn),是橢圓的左焦點(diǎn),為坐標(biāo)原點(diǎn),到直線的距離是,則橢圓的離心率是()A. B.C. D.10.已知等比數(shù)列中,,則由此數(shù)列的奇數(shù)項(xiàng)所組成的新數(shù)列的前項(xiàng)和為()A. B.C. D.11.已知定義在R上的函數(shù)滿足,且當(dāng)時(shí),,則下列結(jié)論中正確的是()A. B.C. D.12.某種疾病的患病率為0.5%,通過驗(yàn)血診斷該病的誤診率為2%,即非患者中有2%的人驗(yàn)血結(jié)果為陽性,患者中有2%的人驗(yàn)血結(jié)果為陰性,隨機(jī)抽取一人進(jìn)行驗(yàn)血,則其驗(yàn)血結(jié)果為陽性的概率為()A.0.0689 B.0.049C.0.0248 D.0.02二、填空題:本題共4小題,每小題5分,共20分。13.已知拋物線的焦點(diǎn)與的右焦點(diǎn)重合,則__________.14.某班學(xué)號的學(xué)生鉛球測試成績?nèi)缦卤恚簩W(xué)號12345678成績9.17.98.46.95.27.18.08.1可以估計(jì)這8名學(xué)生鉛球測試成績的第25百分位數(shù)為___________.15.已知曲線,則曲線在點(diǎn)處的切線方程為______16.如圖,棱長為2的正方體中,E,F(xiàn)分別為棱、的中點(diǎn),G為面對角線上一個(gè)動點(diǎn),則三棱錐的外接球表面積的最小值為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知等差數(shù)列的前n項(xiàng)和為,且.(1)求數(shù)列的通項(xiàng)公式及;(2)設(shè),求數(shù)列的前n項(xiàng)和.18.(12分)某省食品藥品監(jiān)管局對15個(gè)大學(xué)食堂“進(jìn)貨渠道合格性”和“食品安全”進(jìn)行量化評估,滿分為10分,大部分大學(xué)食堂的評分在7~10分之間,以下表格記錄了它們的評分情況:分?jǐn)?shù)段食堂個(gè)數(shù)1383(1)現(xiàn)從15個(gè)大學(xué)食堂中隨機(jī)抽取3個(gè),求至多有1個(gè)大學(xué)食堂的評分不低于9分的概率;(2)以這15個(gè)大學(xué)食堂的評分?jǐn)?shù)據(jù)評估全國的大學(xué)食堂的評分情況,若從全國的大學(xué)食堂中任選3個(gè),記X表示抽到評分不低于9分的食堂個(gè)數(shù),求X的分布列及數(shù)學(xué)期望.19.(12分)已知橢圓的離心率為,點(diǎn)在橢圓C上.(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)已知直線與橢圓C交于P,Q兩點(diǎn),點(diǎn)M是線段PQ的中點(diǎn),直線過點(diǎn)M,且與直線l垂直.記直線與y軸的交點(diǎn)為N,求的取值范圍.20.(12分)如圖,在多面體中,和均為等邊三角形,D是的中點(diǎn),.(1)證明:;(2)若,求多面體的體積.21.(12分)新疆長絨棉品質(zhì)優(yōu)良,纖維柔長,被世人譽(yù)為“棉中極品”,產(chǎn)于我國新疆的吐魯番盆地、塔里木盆地的阿克蘇、喀什等地.棉花的纖維長度是評價(jià)棉花質(zhì)量的重要指標(biāo)之一,在新疆某地區(qū)成熟的長絨棉中隨機(jī)抽測了一批棉花的纖維長度(單位:mm),將樣本數(shù)據(jù)制成頻率分布直方圖如下:(1)求的值;(2)估計(jì)該樣本數(shù)據(jù)的平均數(shù)(同一組中的數(shù)據(jù)用該組數(shù)據(jù)區(qū)間的中點(diǎn)值為代表);(3)根據(jù)棉花纖維長度將棉花等級劃分如下:纖維長度小于30mm大于等于30mm,小于40mm大于等于40mm等級二等品一等品特等品從該地區(qū)成熟的棉花中隨機(jī)抽測兩根棉花的纖維長度,用樣本的頻率估計(jì)概率,求至少有一根棉花纖維長度達(dá)到特等品的概率.22.(10分)三棱錐中,,,,直線與平面所成的角為,點(diǎn)在線段上.(1)求證:;(2)若點(diǎn)在上,滿足,點(diǎn)滿足,求實(shí)數(shù)使得二面角的余弦值為.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】由直線點(diǎn)斜式計(jì)算出直線方程.【詳解】因?yàn)橹本€過點(diǎn),且斜率為2,所以該直線方程為,即.故選【點(diǎn)睛】本題考查了求直線方程,由題意已知點(diǎn)坐標(biāo)和斜率,故選用點(diǎn)斜式即可求出答案,較為簡單.2、A【解析】先由列舉法計(jì)算出基本事件的總數(shù),然后再求出該同學(xué)選到歷史、地理兩門功課的基本事件的個(gè)數(shù),基本事件個(gè)數(shù)比即為所求概率.【詳解】由題意,記物理、歷史分別為、,從中選擇1門;記思想政治、地理、化學(xué)、生物為、、、,從中選擇2門;則該同學(xué)隨機(jī)選擇3門功課,所包含的基本事件有:,,,,,,,,,,,,共個(gè)基本事件;該同學(xué)選到歷史、地理兩門功課所包含的基本事件有:,,共個(gè)基本事件;該同學(xué)選到物理、地理兩門功課的概率為.故選:A.【點(diǎn)睛】本題考查求古典概型的概率,屬于基礎(chǔ)題型.3、C【解析】根據(jù)題意、空間向量基底的概念和共線的運(yùn)算即可判斷命題①②③,根據(jù)空間向量的平行關(guān)系即可判斷命題④.【詳解】①:向量與空間任意向量都不能構(gòu)成一個(gè)基底,則與共線或與其中有一個(gè)為零向量,所以,故①正確;②:由向量是空間一組基底,則空間中任意一個(gè)向量,存在唯一的實(shí)數(shù)組使得,所以也是空間一組基底,故②正確;③:由為空間一組基底,若,則,所以,故③正確;④:對于任意非零空間向量,,若,則存在一個(gè)實(shí)數(shù)使得,有,又中可以有為0的,分式?jīng)]有意義,故④錯(cuò)誤.故選:C4、B【解析】根據(jù)題意可知,即可由求出,再根據(jù)焦點(diǎn)位置得出橢圓方程【詳解】因?yàn)?,所以,而焦點(diǎn)在軸上,所以橢圓方程為故選:B5、A【解析】根據(jù)兩條直線垂直列方程,化簡求得的值.【詳解】由于直線與直線垂直,所以.故選:A6、B【解析】建立空間直角坐標(biāo)系,求出相關(guān)點(diǎn)的坐標(biāo),求出向量的坐標(biāo),再利用向量的夾角公式計(jì)算即可.【詳解】如圖,以O(shè)為坐標(biāo)原點(diǎn),過點(diǎn)O作OB的垂線為x軸,OB為y軸,OA為z軸,建立空間直角坐標(biāo)系,設(shè),則,,則,,,,,設(shè)的夾角為,則,所以異面直線AB與OC所成角的余弦值為,故選:B.7、B【解析】根據(jù)斜二側(cè)直觀圖的畫法法則,直接判斷①②③④的正確性,即可推出結(jié)論【詳解】由斜二測畫法規(guī)則知:三角形的直觀圖仍然是三角形,所以①正確;根據(jù)平行性不變知,平行四邊形的直觀圖還是平行四邊形,所以②正確;根據(jù)兩軸的夾角為45°或135°知,菱形的直觀圖不再是菱形,所以③錯(cuò)誤;根據(jù)平行于x軸的長度不變,平行于y軸的長度減半知,正方形的直觀圖不再是正方形,所以④錯(cuò)誤.故選:B.8、D【解析】根據(jù)充分條件、必要條件的判定方法,結(jié)合不等式的性質(zhì),即可求解.【詳解】由,可得,即,當(dāng)時(shí),,但的符號不確定,所以充分性不成立;反之當(dāng)時(shí),也不一定成立,所以必要性不成立,所以是的即不充分也不必要條件.故選:D.9、B【解析】連接,得到,作,求得,利用橢圓的定義,可求得,在直角中,利用勾股定理,整理的,即可求解橢圓的離心率.【詳解】如圖所示,連接,因?yàn)閳A,可得,過點(diǎn)作,可得,且,由橢圓的定義,可得,所以,在直角中,可得,即,整理得,兩側(cè)同除,可得,解得或,又因?yàn)?,所以橢圓的離心率為.故選:B【點(diǎn)睛】本題主要考查了橢圓的定義,直角三角形的勾股定理,以及橢圓的離心率的求解,其中解答中熟記橢圓的定義,結(jié)合直角三角形的勾股定理,列出關(guān)于的方程是解答的關(guān)鍵,著重考查了推理與計(jì)算能力,屬于基礎(chǔ)題.10、B【解析】確實(shí)新數(shù)列是等比數(shù)列及公比、首項(xiàng)后,由等比數(shù)列前項(xiàng)和公式計(jì)算,【詳解】由題意,新數(shù)列為,所以,,前項(xiàng)和為故選:B.11、B【解析】由可得,利用導(dǎo)數(shù)判斷函數(shù)在上的單調(diào)性,由此比較函數(shù)值的大小確定正確選項(xiàng).【詳解】∵∴,當(dāng)時(shí),,∴,故∴在內(nèi)單調(diào)遞增,又,∴,所以故選:B12、C【解析】根據(jù)全概率公式即可求出【詳解】隨機(jī)抽取一人進(jìn)行驗(yàn)血,則其驗(yàn)血結(jié)果為陽性的概率為0.0248故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】求出拋物線的焦點(diǎn)坐標(biāo)即為的右焦點(diǎn)可得答案.【詳解】由題意可知:拋物線的焦點(diǎn)坐標(biāo)為,由題意知表示焦點(diǎn)在軸的橢圓,在橢圓中:,所以,因?yàn)?,所?故答案為:.14、【解析】利用百分位數(shù)的計(jì)算方法即可求解.【詳解】將以上數(shù)據(jù)從小到大排列為,,,,,,,;%,則第25百分位數(shù)第項(xiàng)和第項(xiàng)的平均數(shù),即為.故答案為:.15、【解析】利用導(dǎo)數(shù)求出切線的斜率即得解.【詳解】解:由題得,所以切線的斜率為,所以切線的方程為即.故答案為:16、【解析】以DA,DC,分別為x軸,y軸,z軸建系,則,設(shè),球心,得到外接球半徑關(guān)于的函數(shù)關(guān)系,求出的最小值,即可得到答案;【詳解】解:以DA,DC,分別為x軸,y軸,z軸建系.則,設(shè),球心,,又.聯(lián)立以上兩式,得,所以時(shí),,為最小值,外接球表面積最小值為.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)設(shè)等差數(shù)列的公差為,根據(jù)已知條件可得出關(guān)于、的方程組,解出這兩個(gè)量的值,利用等差數(shù)列的通項(xiàng)公式可求得數(shù)列的通項(xiàng)公式,利用等差數(shù)列前n項(xiàng)和公式求出;(2)求得,利用裂項(xiàng)相消法即可求得.【小問1詳解】設(shè)等差數(shù)列的公差為,由,解得,所以,故數(shù)列的通項(xiàng)公式,;【小問2詳解】由(1)可得,所以,所以.18、(1)(2)分布列見解析,【解析】(1)利用古典概型的概率公式可求概率.(2)由題設(shè)可得,故利用二項(xiàng)分布可求的分布列,利用公式可求其期望.【小問1詳解】設(shè)至多有1個(gè)大學(xué)食堂的評分不低于9分為事件,則.所以至多有1個(gè)大學(xué)食堂的評分不低于9分的概率為.【小問2詳解】任意一個(gè)大學(xué)食堂,其評分不低于9分的概率為,故,所以,,,,的分布列為:0123.19、(1)(2)【解析】(1)求出后可得橢圓的方程.(2)聯(lián)立直線的方程和橢圓方程,消去后利用韋達(dá)定理可用表示,利用換元法和二次函數(shù)的性質(zhì)可求的取值范圍.小問1詳解】由題意可得,解得,.故橢圓C的標(biāo)準(zhǔn)方程為.【小問2詳解】設(shè),,.聯(lián)立,整理得,則,解得,從而,.因?yàn)镸是線段PQ的中點(diǎn),所以,則,故.直線的方程為,即.令,得,則,所以.設(shè),則,故.因?yàn)椋?,所?20、(1)見詳解(1).(2)16【解析】(1)證線面垂直從而證線線垂直.(2)把面體看成兩個(gè)錐體,由已知線面垂直得高,并進(jìn)一步可求錐體底面邊長,從而得解.【小問1詳解】因?yàn)椋怨裁?,連接、,因?yàn)楹途鶠榈冗吶切?,D是的中點(diǎn),所以,,,所以面平,平面,【小問2詳解】因?yàn)?,,四邊形是平行四邊形,和均為等邊三角形,D是的中點(diǎn),所以,,平行四邊形是正方形形,,.21、(1)(2)(3)【解析】(1)由頻率分布直方圖中所有矩形的面積之和為1,可求出答案.(2)根據(jù)平均數(shù)的公式可得到答案.(3)先求出一根棉花纖維長度達(dá)到特等品的概率,然后分恰好有一根和兩根棉花小問1詳解】由解得【小問2詳解】該樣本數(shù)據(jù)的平均數(shù)為:【小問3詳解】由題意一根棉花纖維長度達(dá)到特等品的概率為:兩根棉花中至少有一根棉花纖維長度達(dá)到特等品的概率22、(1)證明見解析;(2).【解析】(1)證明平面,利用線面垂直的性質(zhì)可

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論