版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
江西省2026屆高二數(shù)學(xué)第一學(xué)期期末經(jīng)典試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,若是函數(shù)一個零點,則的值為()A.0 B.C.1 D.2.已知正實數(shù)滿足,則的最小值為()A. B.9C. D.3.已知數(shù)列滿足且,則()A.是等差數(shù)列 B.是等比數(shù)列C.是等比數(shù)列 D.是等比數(shù)列4.已知函數(shù)在上單調(diào)遞增,則實數(shù)a的取值范圍為()A. B.C. D.5.函數(shù),的值域為()A. B.C. D.6.若,則()A.1 B.0C. D.7.若橢圓的右焦點與拋物線的焦點重合,則橢圓的離心率為()A. B.C. D.8.公元前6世紀(jì),古希臘的畢達哥拉斯學(xué)派研究發(fā)現(xiàn)了黃金分割,簡稱黃金數(shù).離心率等于黃金數(shù)的倒數(shù)的雙曲線稱為黃金雙曲線.若雙曲線是黃金雙曲線,則()A. B.C. D.9.從編號分別為,,,,的五個大小完全相同的小球中,隨機取出三個小球,則恰有兩個小球編號相鄰的概率為()A. B.C. D.10.設(shè)是公比為的等比數(shù)列,則“”是“為遞增數(shù)列”的A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件11.若拋物線焦點坐標(biāo)為,則的值為A. B.C.8 D.412.函數(shù)的遞增區(qū)間是()A. B.和C. D.和二、填空題:本題共4小題,每小題5分,共20分。13.已知,,,,使得成立,則實數(shù)a的取值范圍是___________.14.已知橢圓C:,點M與C的焦點不重合,若M關(guān)于C的焦點的對稱點分別為A,B,線段MN的中點在C上,則_________.15.已知橢圓的左、右頂點分別為A,B,橢圓C的左、右焦點分別為F1,F(xiàn)2,點為橢圓C的下頂點,直線MA與MB的斜率之積為.(1)求橢圓C的方程;(2)設(shè)點P,Q為橢圓C上位于x軸下方的兩點,且,求四邊形面積的最大值.16.已知方程的兩根為和5,則不等式的解集是______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)定義:設(shè)是空間的一個基底,若向量,則稱有序?qū)崝?shù)組為向量在基底下的坐標(biāo).已知是空間的單位正交基底,是空間的另一個基底,若向量在基底下的坐標(biāo)為(1)求向量在基底下的坐標(biāo);(2)求向量在基底下的模18.(12分)已知橢圓:經(jīng)過點,設(shè)右焦點F,橢圓上存在點Q,使QF垂直于x軸且.(1)求橢圓的方程;(2)過點的直線與橢圓交于D,G兩點.是否存在直線使得以DG為直徑的圓過點E(-1,0)?若存在,求出直線的方程,若不存在,說明理由.19.(12分)如圖1,已知矩形ABCD,,,E,F(xiàn)分別為AB,CD的中點,將ABCD卷成一個圓柱,使得BC與AD重合(如圖2),MNGH為圓柱的軸截面,且平面平面MNGH,NG與曲線DE交于點P(1)證明:平面平面MNGH;(2)判斷平面PAE與平面PDH夾角與的大小,并說明理由20.(12分)已知中,分別為角的對邊,且(1)求;(2)若為邊的中點,,求的面積21.(12分)若存在實常數(shù)k和b,使得函數(shù)和對其公共定義域上的任意實數(shù)x都滿足:和恒成立,則稱此直線y=kx+b為和的“隔離直線”.已知函數(shù),.(1)證明函數(shù)在內(nèi)單調(diào)遞增;(2)證明和之間存在“隔離直線”,且b的最小值為-4.22.(10分)書籍是精神世界的入口,閱讀讓精神世界閃光,閱讀逐漸成為許多人的一種生活習(xí)慣,每年4月23日為世界讀書日.某研究機構(gòu)為了解當(dāng)?shù)啬贻p人的閱讀情況,通過隨機抽樣調(diào)查了100位年輕人,對這些人每天的閱讀時間(單位:分鐘)進行統(tǒng)計,得到樣本的頻率分布直方圖,如圖所示:(1)求的值;(2)為了進一步了解年輕人的閱讀方式,研究機構(gòu)采用分層抽樣的方法從每天閱讀時間位于,和的年輕人中抽取5人,再從中任選2人進行調(diào)查,求其中至少有1人每天閱讀時間位于的概率.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】首先根據(jù)題意求出,然后設(shè)函數(shù),利用以及的單調(diào)性,并結(jié)合對數(shù)運算即可求解.【詳解】由題意可知,,所以,不妨設(shè),(),故,從而,易知在上單調(diào)遞增,故,即,從而.故選:A.2、A【解析】根據(jù),將式子化為,進而化簡,然后結(jié)合基本不等式求得答案.【詳解】因為,所以,當(dāng)且僅當(dāng),即時取等號,所以的最小值為.故選:A.3、D【解析】由,化簡得,結(jié)合等比數(shù)列、等差數(shù)列的定義可求解.【詳解】由,可得,所以,又由,,所以是首項為,公比為2的等比數(shù)列,所以,,,,所以不是等差數(shù)列;不等于常數(shù),所以不是等比數(shù)列.故選:D.4、D【解析】根據(jù)題意參變分離得到,求出的最小值,進而求出實數(shù)a的取值范圍.【詳解】由題意得:在上恒成立,即,其中在處取得最小值,,所以,解得:,故選:D5、A【解析】利用基本不等式可得,進而可得,即求.【詳解】∵,∴,當(dāng)且僅當(dāng),即時取等號,∴,,∴.故選:A.6、C【解析】由結(jié)合二項式定理可得出,利用二項式系數(shù)和公式可求得的值.【詳解】,當(dāng)且時,,因此,.故選:C.【點睛】關(guān)鍵點睛:本題考查二項式系數(shù)和的計算,解題的關(guān)鍵是熟悉二項式系數(shù)和公式,考查學(xué)生的轉(zhuǎn)化能力與計算能力,屬于基礎(chǔ)題.7、B【解析】求出拋物線的焦點坐標(biāo),可得出的值,進而可求得橢圓的離心率.【詳解】拋物線的焦點坐標(biāo)為,由已知可得,可得,因此,該橢圓的離心率為.故選:B.8、A【解析】根據(jù)黃金雙曲線的定義直接列方程求解【詳解】雙曲線中的,所以離心率,因為雙曲線是黃金雙曲線,所以,兩邊平方得,解得或(舍去),故選:A9、C【解析】利用古典概型計算公式計算即可【詳解】從編號分別為,,,,的五個大小完全相同的小球中,隨機取出三個小球共有種不同的取法,恰好有兩個小球編號相鄰的有:,共有6種所以概率為故選:C10、D【解析】當(dāng)時,不是遞增數(shù)列;當(dāng)且時,是遞增數(shù)列,但是不成立,所以選D.考點:等比數(shù)列11、A【解析】先把拋物線方程整理成標(biāo)準(zhǔn)方程,進而根據(jù)拋物線的焦點坐標(biāo),可得的值.【詳解】拋物線的標(biāo)準(zhǔn)方程為,因為拋物線的焦點坐標(biāo)為,所以,所以,故選A.【點睛】該題考查的是有關(guān)利用拋物線的焦點坐標(biāo)求拋物線的方程的問題,涉及到的知識點有拋物線的簡單幾何性質(zhì),屬于簡單題目.12、C【解析】求導(dǎo)后,由可解得結(jié)果.【詳解】因為的定義域為,,由,得,解得,所以的遞增區(qū)間為.故選:C.【點睛】本題考查了利用導(dǎo)數(shù)求函數(shù)的增區(qū)間,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由題可得,求導(dǎo)可得的單調(diào)性,將的最小值代入,即得.【詳解】∵,,使得成立,∴由,得,當(dāng)時,,∴在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,∴函數(shù)在區(qū)間上的最小值為又在上單調(diào)遞增,∴函數(shù)在區(qū)間上的最小值為,∴,即實數(shù)的取值范圍是故答案為:.14、【解析】設(shè)M,N的中點坐標(biāo)為P,,則;由于,化簡可得,根據(jù)橢圓的定義==6,所以12.考點:1.橢圓的定義;2.兩點距離公式.15、(1)(2)【解析】(1)由斜率之積求得,再由已知條件得,從而得橢圓方程;(2)延長QF2交橢圓于N點,連接,,設(shè)直線,,.直線方程代入橢圓方程,應(yīng)用韋達定理得,結(jié)合不等式的性質(zhì)、函數(shù)的單調(diào)性可得的范圍,再計算出四邊形面積得結(jié)論【小問1詳解】由題知:,,,又,∴橢圓.【小問2詳解】延長QF2交橢圓于N點,連接,,如下圖所示:,∴設(shè)直線,,.由,得,,,.,由勾形函數(shù)的單調(diào)性得,根據(jù)對稱性得:,且,,∴四邊形面積的最大值為.16、【解析】根據(jù)根與系數(shù)的關(guān)系以及一元二次不等式的解法即可解出【詳解】由題意可知,,解得,所以即為,解得或,所以不等式的解集是故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)根據(jù)向量在基底下的坐標(biāo)為,得出向量在基底下的坐標(biāo);(2)根據(jù)向量在基底下的坐標(biāo)直接計算模即可【小問1詳解】因為向量在基底下坐標(biāo)為,則,所以向量在基底下的坐標(biāo)為.【小問2詳解】因為向量在基底下的坐標(biāo)為,所以向量在基底下的模為.18、(1);(2)存在,或.【解析】(1)根據(jù)題意,列出的方程組,求得,則橢圓方程得解;(2)對直線的斜率進行討論,當(dāng)斜率存在時,設(shè)出直線方程,聯(lián)立橢圓方程,利用韋達定理,轉(zhuǎn)化題意為,求解即可.小問1詳解】由題意,得,設(shè),將代入橢圓方程,得,所以,解得,所以橢圓的方程為.【小問2詳解】當(dāng)斜率不存在時,即時,,為橢圓短軸兩端點,則以為直徑的圓為,恒過點,滿足題意;當(dāng)斜率存在時,設(shè),,,由得:,,解得:,,若以為直徑的圓過點,則,即,又,,,解得:,滿足,即,此時直線的方程為綜上,存在直線使得以為直徑的圓過點,的方程為或19、(1)證明見解析(2)平面PAE與平面PDH夾角大于,理由見解析【解析】(1)由面面垂直證明,然后得證平面MNGH后可得面面垂直;(2)建立如圖所示的空間直角坐標(biāo)系,用空間向量法求出二面角的余弦可得結(jié)論【小問1詳解】如圖O,為圓柱上,下底面的中心,可知,,平面平面MNGH,所以是二面角的平面角,平面平面MNGH,所以,即,,平面MNGH,所以平面MNGH,因為平面PAE,所以平面平面MNGH;【小問2詳解】因為,所以得,如圖,以為坐標(biāo)原點,以,,所在直線為x,y,z軸建立空間直角坐標(biāo)系,則可知,,,,,則,,,,設(shè)平面AEP的法向量為,則,令,得,設(shè)平面DHP的法向量為,則,即令,得,,設(shè)平面PAE與平面PDH夾角為,則,,因為,即,所以平面PAE與平面PDH夾角大于20、(1);(2)【解析】(1)利用正弦定理化邊為角可得,化簡可得,結(jié)合,即得解;(2)在中,由余弦定理得,可得,利用面積公式即得解【詳解】(1)中由正弦定理及條件,可得,∵,,∴,∵,∴,或,又∵,∴,∴,,∴(2)為邊的中點,,,得,中,由余弦定理得,∴,∴,∵,∴,21、(1)見解析(2)見解析【解析】(1)由導(dǎo)數(shù)得出在上的單調(diào)性;(2)設(shè)和之間的隔離直線為y=kx+b,由題設(shè)條件得出對任意恒成立,再由二次函數(shù)的性質(zhì)求解即可.【小問1詳解】,當(dāng)時,在上單調(diào)遞增在內(nèi)單調(diào)遞增【小問2詳解】設(shè)和之間的隔離直線為y=kx+b則對任意恒成立,即對任意恒成立由對任意恒成立,得當(dāng)時,則有符合題意;當(dāng)時,則有對任意恒成立的對稱軸為又的對稱軸為即故和之間存在“隔離直線”,且b的最小值為-4.【點睛】關(guān)鍵點睛:在解決問題一時,求了一階導(dǎo)得不了函數(shù)的單調(diào)性,再次求導(dǎo)得,進而得出
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 聚酯增粘裝置操作工創(chuàng)新應(yīng)用知識考核試卷含答案
- 釩鐵沉淀工安全強化評優(yōu)考核試卷含答案
- 鍋爐除灰、脫硫、脫硝設(shè)備檢修工風(fēng)險識別強化考核試卷含答案
- 印刷設(shè)備裝配調(diào)試工5S執(zhí)行考核試卷含答案
- 我國上市公司并購中換股比例確定:方法、案例與優(yōu)化策略
- 畜禽屠宰無害化處理工安全宣貫評優(yōu)考核試卷含答案
- 拖拉機柴油發(fā)動機裝試工班組考核知識考核試卷含答案
- 建設(shè)工程質(zhì)量檢測員崗前QC管理考核試卷含答案
- 工程地質(zhì)調(diào)查員操作能力競賽考核試卷含答案
- 超硬磨料制造工QC管理知識考核試卷含答案
- 液冷系統(tǒng)防漏液和漏液檢測設(shè)計研究報告
- 2025-2026學(xué)年貴州省安順市多校高一(上)期末物理試卷(含答案)
- 呼吸機相關(guān)肺炎預(yù)防策略指南2026
- 妊娠期缺鐵性貧血中西醫(yī)結(jié)合診療指南-公示稿
- 北京市2025年七年級上學(xué)期期末考試數(shù)學(xué)試卷三套及答案
- 2025年工廠三級安全教育考試卷含答案
- 2026年上海理工大學(xué)單招職業(yè)適應(yīng)性測試題庫附答案
- TCEC電力行業(yè)數(shù)據(jù)分類分級規(guī)范-2024
- 建設(shè)用地報批培訓(xùn)課件
- 駱駝的養(yǎng)殖技術(shù)與常見病防治
- 基層醫(yī)療資源下沉的實踐困境與解決路徑實踐研究
評論
0/150
提交評論