版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
湖南省隆回縣2026屆高二數(shù)學(xué)第一學(xué)期期末達(dá)標(biāo)檢測模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.原點到直線的距離的最大值為()A. B.C. D.2.函數(shù)在(0,e]上的最大值為()A.-1 B.1C.0 D.e3.函數(shù)f(x)=-1+lnx,對?x0,f(x)≥0成立,則實數(shù)a的取值范圍是()A(-∞,2] B.[2,+∞)C.(-∞,1] D.[1,+∞)4.據(jù)有關(guān)文獻(xiàn)記載:我國古代一座層塔共掛了盞燈,且相鄰兩層中的下一層燈數(shù)比上一層燈數(shù)都多為常數(shù)盞,底層的燈數(shù)是頂層的倍,則塔的底層共有燈()A.盞 B.盞C.盞 D.盞5.已知,則點關(guān)于平面的對稱點的坐標(biāo)是()A. B.C. D.6.“”是“函數(shù)在上有極值”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件7.如圖,橢圓的右焦點為,過與軸垂直的直線交橢圓于第一象限的點,點關(guān)于坐標(biāo)原點的對稱點為,且,,則橢圓方程為()A. B.C. D.8.在長方體中,()A. B.C. D.9.設(shè)等差數(shù)列的公差為d,且,則()A.12 B.4C.6 D.810.第屆全運會于年月在陜西西安順利舉辦,其中水上項目在西安奧體中心游泳跳水館進行,為了應(yīng)對比賽,大會組委會將對泳池進行檢修,已知泳池深度為,其容積為,如果池底每平方米的維修費用為元,設(shè)入水處的較短池壁長度為,且據(jù)估計較短的池壁維修費用與池壁長度成正比,且比例系數(shù)為,較長的池壁維修費用滿足代數(shù)式,則當(dāng)泳池的維修費用最低時值為()A. B.C. D.11.在正項等比數(shù)列中,,,則()A27 B.64C.81 D.25612.已知函數(shù),若存在唯一的零點,且,則的取值范圍是A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知單位空間向量,,滿足,.若空間向量滿足,且對于任意實數(shù),的最小值是2,則的最小值是___________.14.若函數(shù)在處有極值,則的值為___________.15.已知是橢圓的一個焦點,為橢圓上一點,為坐標(biāo)原點,若為等邊三角形,則橢圓的離心率為__________16.若存在實常數(shù)k和b,使得函數(shù)F(x)和G(x)對其公共定義域上的任意實數(shù)x都滿足:F(x)≥kx+b和G(x)≤kx+b恒成立,則稱此直線y=kx+b為F(x)和G(x)的“隔離直線”,已知函數(shù)f(x)=x2(x∈R),g(x)(x<0),h(x)=2elnx,有下列命題:①F(x)=f(x)﹣g(x)內(nèi)單調(diào)遞增;②f(x)和g(x)之間存在“隔離直線”,且b的最小值為﹣4;③f(x)和g(x)之間存在“隔離直線”,且k的取值范圍是(﹣4,0];④f(x)和h(x)之間存在唯一的“隔離直線”y=2x﹣e其中真命題為_____(請?zhí)钏姓_命題的序號)三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,AC是圓O的直徑,B是圓O上異于A,C的一點,平面ABC,點E在棱PB上,且,,.(1)求證:;(2)當(dāng)三棱錐的體積最大時,求二面角的余弦值.18.(12分)如圖,在四棱錐P-ABCD中,AD∥BC,ADC=PAB=90°,BC=CD=AD.E為棱AD的中點,異面直線PA與CD所成的角為90°.(I)在平面PAB內(nèi)找一點M,使得直線CM∥平面PBE,并說明理由;(II)若二面角P-CD-A的大小為45°,求直線PA與平面PCE所成角的正弦值.19.(12分)如圖,在四棱雉中,平面ABCD,底面ABCD是直角梯形,其中,,,,E為棱BC上的點,且(1)求證:平面PAC;(2)求二面角A-PC-D的正弦值20.(12分)某企業(yè)為了解下屬某部門對本企業(yè)職工的服務(wù)情況,隨機訪問50名職工,根據(jù)這50名職工對該部門的評分,繪制頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為(1)求頻率分布直方圖中的值;(2)估計該企業(yè)的職工對該部門評分不低于80的概率;(3)從評分在的受訪職工中,隨機抽取2人,求此2人評分都在的概率.21.(12分)在①,②,③,這三個條件中任選一個,補充在下面的問題中,并解答問題在中,內(nèi)角A,,的對邊分別為,,,且滿足______________(1)求;(2)若的面積為,在邊上,且,求的最小值注:如果選擇多個條件分別解答,按第一個解答計分22.(10分)已知數(shù)列中,,的前項和為,且數(shù)列是公差為-3的等差數(shù)列.(1)求;(2)若,數(shù)列前項和為.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】求出直線過的定點,當(dāng)時,原點到直線距離最大,則可求出原點到直線距離的最大值;【詳解】因為可化為,所以直線過直線與直線交點,聯(lián)立可得所以直線過定點,當(dāng)時,原點到直線距離最大,最大距離即為,此時最大值為,故選:C.2、A【解析】對函數(shù)求導(dǎo),然后求出函數(shù)的單調(diào)區(qū)間,從而可求出函數(shù)的最大值【詳解】由,得,當(dāng)時,,當(dāng),,所以在上單調(diào)遞增,在上單調(diào)遞減,所以當(dāng)時,取得最大值,故選:A3、B【解析】由導(dǎo)數(shù)求得的最小值,由最小值非負(fù)可得的范圍【詳解】定義域是,,若,則在上恒成立,單調(diào)遞增,,不合題意;若,則時,,遞減,時,,遞增,所以時,取得極小值也是最小值,由題意,解得故選:B4、C【解析】根據(jù)給定條件利用等差數(shù)列前n項和公式列式計算即可作答.【詳解】依題意,層塔從上層到下層掛燈盞數(shù)依次排成一列可得等差數(shù)列,,于是得,解得,,所以塔的底層共有燈盞.故選:C5、C【解析】根據(jù)對稱性求得坐標(biāo)即可.【詳解】點關(guān)于平面的對稱點的坐標(biāo)是,故選:C6、B【解析】對求導(dǎo),取得函數(shù)在上有極值的等價條件,再根據(jù)充分條件和必要條件的定義進行判斷即可【詳解】解:,則,令,可得,當(dāng)時,,當(dāng)時,,即在上單調(diào)遞減,在上單調(diào)遞增,所以,函數(shù)在處取得極小值,若函數(shù)在上有極值,則,,因為,但是由推不出,因此是函數(shù)在上有極值的必要不充分條件故選:B7、C【解析】連結(jié),設(shè),則,,由可求出,進而可求出,得出橢圓方程.【詳解】由題意設(shè)橢圓的方程:,設(shè)左焦點為,連結(jié),由橢圓的對稱性易得四邊形為平行四邊形,由得,又,設(shè),則,,又,解得,又由,,解得,,,則橢圓的方程為.故選:C.【點睛】關(guān)鍵點睛:本題考查了橢圓的標(biāo)準(zhǔn)方程求解及橢圓的簡單幾何性質(zhì),在求解橢圓標(biāo)準(zhǔn)方程時,關(guān)鍵是求解基本量,,.8、D【解析】根據(jù)向量的運算法則得到,帶入化簡得到答案.【詳解】在長方體中,易知,所以.故選:D.9、B【解析】利用等差數(shù)列的通項公式的基本量計算求出公差.【詳解】,所以.故選:B10、A【解析】根據(jù)題意得到泳池維修費用的的解析式,再利用導(dǎo)數(shù)求出最值即可【詳解】解:設(shè)泳池維修的總費用為元,則由題意得,則,令,解得,當(dāng)時,;當(dāng)時,,故當(dāng)時,有最小值因此,當(dāng)較短池壁為時,泳池的總維修費用最低故選A11、C【解析】根據(jù)等比數(shù)列的通項公式求出公比,進而求得答案.【詳解】設(shè)的公比為,則(負(fù)值舍去),所以.故選:C.12、C【解析】當(dāng)時,,函數(shù)有兩個零點和,不滿足題意,舍去;當(dāng)時,,令,得或.時,;時,;時,,且,此時在必有零點,故不滿足題意,舍去;當(dāng)時,時,;時,;時,,且,要使得存在唯一的零點,且,只需,即,則,選C考點:1、函數(shù)的零點;2、利用導(dǎo)數(shù)求函數(shù)的極值;3、利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性二、填空題:本題共4小題,每小題5分,共20分。13、【解析】以,方向為軸,垂直于,方向為軸建立空間直角坐標(biāo)系,根據(jù)條件求得坐標(biāo),由二次函數(shù)求最值即可求得最小值.【詳解】以,方向為軸,垂直于,方向為軸建立空間直角坐標(biāo)系,則,由可設(shè),由是單位空間向量可得,由可設(shè),,當(dāng),的最小值是2,所以,取,,,當(dāng)時,最小值為.故答案為:.14、2或6【解析】由解析式得到導(dǎo)函數(shù),結(jié)合是函數(shù)極值點,即可求的值.【詳解】由,得,因為函數(shù)在處有極值,所以,即,解得2或6.經(jīng)檢驗,2或6滿足題意.故答案為:2或6.15、##【解析】根據(jù)題中幾何關(guān)系,求得點坐標(biāo),代入橢圓方程求得齊次式,整理化簡即可求得離心率.【詳解】根據(jù)題意,取點為第一象限的點,過點作的垂線,垂足為,如下所示:因為△為等邊三角形,又,故可得則點的坐標(biāo)為,代入橢圓方程可得:,又,整理得:,即,解得(舍)或.故答案為:.16、①②④【解析】①求出F(x)=f(x)﹣g(x)的導(dǎo)數(shù),檢驗在x∈(,0)內(nèi)的導(dǎo)數(shù)符號,即可判斷;②、③設(shè)f(x)、g(x)的隔離直線為y=kx+b,x2≥kx+b對一切實數(shù)x成立,即有△1≤0,又kx+b對一切x<0成立,△2≤0,k≤0,b≤0,根據(jù)不等式的性質(zhì),求出k,b的范圍,即可判斷②③;④存在f(x)和g(x)的隔離直線,那么該直線過這個公共點,設(shè)隔離直線的斜率為k.則隔離直線,構(gòu)造函數(shù),求出函數(shù)函數(shù)的導(dǎo)數(shù),根據(jù)導(dǎo)數(shù)求出函數(shù)的最值【解答】解:①∵F(x)=f(x)﹣g(x)=x2,∴x∈(,0),F(xiàn)′(x)=2x0,∴F(x)=f(x)﹣g(x)在x∈(,0)內(nèi)單調(diào)遞增,故①對;②、③設(shè)f(x)、g(x)的隔離直線為y=kx+b,則x2≥kx+b對一切實數(shù)x成立,即有△1≤0,k2+4b≤0,又kx+b對一切x<0成立,則kx2+bx﹣1≤0,即△2≤0,b2+4k≤0,k≤0,b≤0,即有k2≤﹣4b且b2≤﹣4k,k4≤16b2≤﹣64k?﹣4≤k≤0,同理?﹣4≤b≤0,故②對,③錯;④函數(shù)f(x)和h(x)的圖象在x處有公共點,因此存在f(x)和g(x)的隔離直線,那么該直線過這個公共點,設(shè)隔離直線的斜率為k.則隔離直線方程為y﹣e=k(x),即y=kx﹣ke,由f(x)≥kx﹣ke(x∈R),可得x2﹣kx+ke≥0當(dāng)x∈R恒成立,則△≤0,只有k=2,此時直線方程為:y=2x﹣e,下面證明h(x)≤2x﹣e,令G(x)=2x﹣e﹣h(x)=2x﹣e﹣2elnx,G′(x),當(dāng)x時,G′(x)=0,當(dāng)0<x時,G′(x)<0,當(dāng)x時,G′(x)>0,則當(dāng)x時,G(x)取到極小值,極小值是0,也是最小值所以G(x)=2x﹣e﹣g(x)≥0,則g(x)≤2x﹣e,當(dāng)x>0時恒成立∴函數(shù)f(x)和g(x)存在唯一的隔離直線y=2x﹣e,故④正確故答案為:①②④【點睛】本題以命題的真假判斷與應(yīng)用為載體,考查新定義,關(guān)鍵是對新定義的理解,考查函數(shù)的求導(dǎo),利用導(dǎo)數(shù)求最值,屬于難題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)由圓的性質(zhì)可得,再由線面垂直的性質(zhì)可得,從而由線面垂直的判定定理可得平面PAB,所以得,再結(jié)合已知條件可得平面PBC,由線面垂直的性質(zhì)可得結(jié)論;(2)由已知條件結(jié)合基本不等式可得當(dāng)三棱錐的體積最大時,是等腰直角三角形,,從而以O(shè)B,OC所在直線分別為x軸,y軸,以過點O且垂直于圓O平面的直線為z軸建立如圖所示的空間直角坐標(biāo)系,利用空間向量求解.【小問1詳解】證明:因為AC是圓O的直徑,點B是圓O上不與A,C重合的一個動點,所以.因為平面ABC,平面ABC,所以.因為,且AB,平面PAB,所以平面PAB.因為平面PAB,所以.因為,,且BC,平面PBC,所以平面PBC.因為平面PBC,所以.【小問2詳解】解:因為,,所以,所以三棱錐的體積,(當(dāng)且僅當(dāng)“”時等號成立).所以當(dāng)三棱錐的體積最大時,是等腰直角三角形,.所以以O(shè)B,OC所在直線分別為x軸,y軸,以過點O且垂直于圓O平面的直線為z軸建立如圖所示的空間直角坐標(biāo)系,則,,,.因為∽,所以,因為,,所以,所以,.設(shè)向量為平面的一個法向量,則即令得,.向量為平面ABC的一個法向量,.因為二面角是銳角,所以二面角的余弦值為.18、(Ⅰ)見解析;(Ⅱ).【解析】本題考查線面平行、線線平行、向量法等基礎(chǔ)知識,考查空間想象能力、分析問題的能力、計算能力.第一問,利用線面平行的定理,先證明線線平行,再證明線面平行;第二問,可以先找到線面角,再在三角形中解出正弦值,還可以用向量法建立直角坐標(biāo)系解出正弦值.試題解析:(Ⅰ)在梯形ABCD中,AB與CD不平行.延長AB,DC,相交于點M(M∈平面PAB),點M即為所求的一個點.理由如下:由已知,BC∥ED,且BC=ED.所以四邊形BCDE是平行四邊形.從而CM∥EB.又EB平面PBE,CM平面PBE,所以CM∥平面PBE.(說明:延長AP至點N,使得AP=PN,則所找的點可以是直線MN上任意一點)(Ⅱ)方法一:由已知,CD⊥PA,CD⊥AD,PAAD=A,所以CD⊥平面PAD.從而CD⊥PD.所以PDA是二面角P-CD-A的平面角.所以PDA=45°.設(shè)BC=1,則在Rt△PAD中,PA=AD=2.過點A作AH⊥CE,交CE的延長線于點H,連接PH.易知PA⊥平面ABCD,從而PA⊥CE.于是CE⊥平面PAH.所以平面PCE⊥平面PAH.過A作AQ⊥PH于Q,則AQ⊥平面PCE.所以APH是PA與平面PCE所成的角.在Rt△AEH中,AEH=45°,AE=1,所以AH=.在Rt△PAH中,PH==,所以sinAPH==.方法二:由已知,CD⊥PA,CD⊥AD,PAAD=A,所以CD⊥平面PAD.于是CD⊥PD.從而PDA是二面角P-CD-A的平面角.所以PDA=45°.由PA⊥AB,可得PA⊥平面ABCD.設(shè)BC=1,則在Rt△PAD中,PA=AD=2.作Ay⊥AD,以A為原點,以,的方向分別為x軸,z軸的正方向,建立如圖所示的空間直角坐標(biāo)系A(chǔ)-xyz,則A(0,0,0),P(0,0,2),C(2,1,0),E(1,0,0),所以=(1,0,-2),=(1,1,0),=(0,0,2)設(shè)平面PCE的法向量為n=(x,y,z),由得設(shè)x=2,解得n=(2,-2,1).設(shè)直線PA與平面PCE所成角為α,則sinα==.所以直線PA與平面PCE所成角的正弦值為.考點:線線平行、線面平行、向量法.19、(1)證明見解析(2)【解析】建立空間直角坐標(biāo)系,計算出相關(guān)點的坐標(biāo),進而計算出相關(guān)向量的坐標(biāo);(1)計算向量的數(shù)量積,,根據(jù)數(shù)量積結(jié)果為零,證明線線垂直,進而證明線面垂直2;(2)求出平面PCD的法向量和平面PAC的法向量,根據(jù)向量的夾角公式即可求解.【小問1詳解】證明:因為平面ABCD,平面ABCD,平面ABCD,所以,,又因為,則以A為坐標(biāo)原點,分別以AB、AD、AP所在的直線為x、y、z軸建立空間直角坐標(biāo)系,則,,,,,,,,,則,,所以,,又,平面PAC,平面PAC,∴平面PAC;【小問2詳解】解:由(1)可知平面PAC,可作為平面PAC的法向量,設(shè)平面PCD的法向量,因為,所以,即,不妨設(shè),得,又由圖示知二面角為銳角,所以二面角的正弦值為20、(1)0.006;(2);(3).【解析】(1)在頻率分布直方圖中,由頻率總和即所有矩形面積之和為,可求;(2)在頻率分布直方圖中先求出50名受訪職工評分不低于80的頻率為,由頻率與概率關(guān)系可得該部門評分不低于80的概率的估計值為;(3)受訪職工評分在[50,60)的有3人,記為,受訪職工評分在[40,50)的有2人,記為,列出從這5人中選出兩人所有基本事件,即可求相應(yīng)的概率.【詳解】(1)因為,所以(2)由所給頻率分布直方圖知,50
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 絲麻毛纖維預(yù)處理工安全防護強化考核試卷含答案
- 我國上市公司環(huán)境信息披露的市場反應(yīng):理論、實證與啟示
- 我國上市公司控制權(quán)轉(zhuǎn)移的市場反應(yīng):基于多案例的深度剖析與理論探究
- 我國上市公司對外擔(dān)保風(fēng)險的多維度實證剖析與治理策略
- 氮化鈦涂層工班組協(xié)作水平考核試卷含答案
- 老年精神障礙社區(qū)網(wǎng)格化管理方案
- 道路運輸調(diào)度員安全防護知識考核試卷含答案
- 鑒定估價師風(fēng)險評估與管理強化考核試卷含答案
- 森林園林康養(yǎng)師安全綜合評優(yōu)考核試卷含答案
- 露天礦采礦前裝機司機安全防護考核試卷含答案
- 研學(xué)旅行概論 課件 第一章 研學(xué)旅行的起源與發(fā)展
- 2021-2022學(xué)年浙江省寧波市鎮(zhèn)海區(qū)蛟川書院八年級(上)期末數(shù)學(xué)試卷(附答案詳解)
- (新版)老年人能力評估師理論考試復(fù)習(xí)題庫(含答案)
- 光纖激光打標(biāo)機說明書
- 治理現(xiàn)代化下的高校合同管理
- 境外宗教滲透與云南邊疆民族地區(qū)意識形態(tài)安全研究
- GB/T 33365-2016鋼筋混凝土用鋼筋焊接網(wǎng)試驗方法
- GB/T 28920-2012教學(xué)實驗用危險固體、液體的使用與保管
- GB/T 16426-1996粉塵云最大爆炸壓力和最大壓力上升速率測定方法
- ARDS患者的護理查房課件
- 人大企業(yè)經(jīng)濟學(xué)考研真題-802經(jīng)濟學(xué)綜合歷年真題重點
評論
0/150
提交評論