版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2026屆河南省濟(jì)源英才學(xué)校高三數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)α,β為兩個(gè)平面,則α∥β的充要條件是A.α內(nèi)有無數(shù)條直線與β平行B.α內(nèi)有兩條相交直線與β平行C.α,β平行于同一條直線D.α,β垂直于同一平面2.i是虛數(shù)單位,若,則乘積的值是()A.-15 B.-3 C.3 D.153.已知復(fù)數(shù)是純虛數(shù),其中是實(shí)數(shù),則等于()A. B. C. D.4.中國的國旗和國徽上都有五角星,正五角星與黃金分割有著密切的聯(lián)系,在如圖所示的正五角星中,以、、、、為頂點(diǎn)的多邊形為正五邊形,且,則()A. B. C. D.5.執(zhí)行如圖所示的程序框圖,則輸出的的值為()A. B.C. D.6.已知雙曲線:,,為其左、右焦點(diǎn),直線過右焦點(diǎn),與雙曲線的右支交于,兩點(diǎn),且點(diǎn)在軸上方,若,則直線的斜率為()A. B. C. D.7.已知實(shí)數(shù),滿足約束條件,則目標(biāo)函數(shù)的最小值為A. B.C. D.8.函數(shù)的對稱軸不可能為()A. B. C. D.9.設(shè),隨機(jī)變量的分布列是01則當(dāng)在內(nèi)增大時(shí),()A.減小,減小 B.減小,增大C.增大,減小 D.增大,增大10.半徑為2的球內(nèi)有一個(gè)內(nèi)接正三棱柱,則正三棱柱的側(cè)面積的最大值為()A. B. C. D.11.由曲線圍成的封閉圖形的面積為()A. B. C. D.12.已知為圓的一條直徑,點(diǎn)的坐標(biāo)滿足不等式組則的取值范圍為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)的單調(diào)增區(qū)間為__________.14.已知函數(shù),若關(guān)于的方程在定義域上有四個(gè)不同的解,則實(shí)數(shù)的取值范圍是_______.15.在中,內(nèi)角的對邊長分別為,已知,且,則_________.16.的展開式中的系數(shù)為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知等差數(shù)列的前n項(xiàng)和為,,公差,、、成等比數(shù)列,數(shù)列滿足.(1)求數(shù)列,的通項(xiàng)公式;(2)已知,求數(shù)列的前n項(xiàng)和.18.(12分)已知函數(shù).(1)若,且,求證:;(2)若時(shí),恒有,求的最大值.19.(12分)如圖,為等腰直角三角形,,D為AC上一點(diǎn),將沿BD折起,得到三棱錐,且使得在底面BCD的投影E在線段BC上,連接AE.(1)證明:;(2)若,求二面角的余弦值.20.(12分)已知,,不等式恒成立.(1)求證:(2)求證:.21.(12分)已知不等式的解集為.(1)求實(shí)數(shù)的值;(2)已知存在實(shí)數(shù)使得恒成立,求實(shí)數(shù)的最大值.22.(10分)在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為(為參數(shù)).以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,且兩個(gè)坐標(biāo)系取相等的長度單位,建立極坐標(biāo)系.(1)設(shè)直線l的極坐標(biāo)方程為,若直線l與曲線C交于兩點(diǎn)A.B,求AB的長;(2)設(shè)M、N是曲線C上的兩點(diǎn),若,求面積的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
本題考查了空間兩個(gè)平面的判定與性質(zhì)及充要條件,滲透直觀想象、邏輯推理素養(yǎng),利用面面平行的判定定理與性質(zhì)定理即可作出判斷.【詳解】由面面平行的判定定理知:內(nèi)兩條相交直線都與平行是的充分條件,由面面平行性質(zhì)定理知,若,則內(nèi)任意一條直線都與平行,所以內(nèi)兩條相交直線都與平行是的必要條件,故選B.【點(diǎn)睛】面面平行的判定問題要緊扣面面平行判定定理,最容易犯的錯(cuò)誤為定理記不住,憑主觀臆斷,如:“若,則”此類的錯(cuò)誤.2、B【解析】,∴,選B.3、A【解析】
對復(fù)數(shù)進(jìn)行化簡,由于為純虛數(shù),則化簡后的復(fù)數(shù)形式中,實(shí)部為0,得到的值,從而得到復(fù)數(shù).【詳解】因?yàn)闉榧兲摂?shù),所以,得所以.故選A項(xiàng)【點(diǎn)睛】本題考查復(fù)數(shù)的四則運(yùn)算,純虛數(shù)的概念,屬于簡單題.4、A【解析】
利用平面向量的概念、平面向量的加法、減法、數(shù)乘運(yùn)算的幾何意義,便可解決問題.【詳解】解:.故選:A【點(diǎn)睛】本題以正五角星為載體,考查平面向量的概念及運(yùn)算法則等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想,屬于基礎(chǔ)題.5、B【解析】
列出循環(huán)的每一步,進(jìn)而可求得輸出的值.【詳解】根據(jù)程序框圖,執(zhí)行循環(huán)前:,,,執(zhí)行第一次循環(huán)時(shí):,,所以:不成立.繼續(xù)進(jìn)行循環(huán),…,當(dāng),時(shí),成立,,由于不成立,執(zhí)行下一次循環(huán),,,成立,,成立,輸出的的值為.故選:B.【點(diǎn)睛】本題考查的知識(shí)要點(diǎn):程序框圖的循環(huán)結(jié)構(gòu)和條件結(jié)構(gòu)的應(yīng)用,主要考查學(xué)生的運(yùn)算能力和轉(zhuǎn)換能力,屬于基礎(chǔ)題型.6、D【解析】
由|AF2|=3|BF2|,可得.設(shè)直線l的方程x=my+,m>0,設(shè),,即y1=﹣3y2①,聯(lián)立直線l與曲線C,得y1+y2=-②,y1y2=③,求出m的值即可求出直線的斜率.【詳解】雙曲線C:,F(xiàn)1,F(xiàn)2為左、右焦點(diǎn),則F2(,0),設(shè)直線l的方程x=my+,m>0,∵雙曲線的漸近線方程為x=±2y,∴m≠±2,設(shè)A(x1,y1),B(x2,y2),且y1>0,由|AF2|=3|BF2|,∴,∴y1=﹣3y2①由,得∴△=(2m)2﹣4(m2﹣4)>0,即m2+4>0恒成立,∴y1+y2=②,y1y2=③,聯(lián)立①②得,聯(lián)立①③得,,即:,,解得:,直線的斜率為,故選D.【點(diǎn)睛】本題考查直線與雙曲線的位置關(guān)系,考查韋達(dá)定理的運(yùn)用,考查向量知識(shí),屬于中檔題.7、B【解析】
作出不等式組對應(yīng)的平面區(qū)域,目標(biāo)函數(shù)的幾何意義為動(dòng)點(diǎn)到定點(diǎn)的斜率,利用數(shù)形結(jié)合即可得到的最小值.【詳解】解:作出不等式組對應(yīng)的平面區(qū)域如圖:目標(biāo)函數(shù)的幾何意義為動(dòng)點(diǎn)到定點(diǎn)的斜率,當(dāng)位于時(shí),此時(shí)的斜率最小,此時(shí).故選B.【點(diǎn)睛】本題主要考查線性規(guī)劃的應(yīng)用以及兩點(diǎn)之間的斜率公式的計(jì)算,利用z的幾何意義,通過數(shù)形結(jié)合是解決本題的關(guān)鍵.8、D【解析】
由條件利用余弦函數(shù)的圖象的對稱性,得出結(jié)論.【詳解】對于函數(shù),令,解得,當(dāng)時(shí),函數(shù)的對稱軸為,,.故選:D.【點(diǎn)睛】本題主要考查余弦函數(shù)的圖象的對稱性,屬于基礎(chǔ)題.9、C【解析】
,,判斷其在內(nèi)的單調(diào)性即可.【詳解】解:根據(jù)題意在內(nèi)遞增,,是以為對稱軸,開口向下的拋物線,所以在上單調(diào)遞減,故選:C.【點(diǎn)睛】本題考查了利用隨機(jī)變量的分布列求隨機(jī)變量的期望與方差,屬于中檔題.10、B【解析】
設(shè)正三棱柱上下底面的中心分別為,底面邊長與高分別為,利用,可得,進(jìn)一步得到側(cè)面積,再利用基本不等式求最值即可.【詳解】如圖所示.設(shè)正三棱柱上下底面的中心分別為,底面邊長與高分別為,則,在中,,化為,,,當(dāng)且僅當(dāng)時(shí)取等號(hào),此時(shí).故選:B.【點(diǎn)睛】本題考查正三棱柱與球的切接問題,涉及到基本不等式求最值,考查學(xué)生的計(jì)算能力,是一道中檔題.11、A【解析】
先計(jì)算出兩個(gè)圖像的交點(diǎn)分別為,再利用定積分算兩個(gè)圖形圍成的面積.【詳解】封閉圖形的面積為.選A.【點(diǎn)睛】本題考察定積分的應(yīng)用,屬于基礎(chǔ)題.解題時(shí)注意積分區(qū)間和被積函數(shù)的選取.12、D【解析】
首先將轉(zhuǎn)化為,只需求出的取值范圍即可,而表示可行域內(nèi)的點(diǎn)與圓心距離,數(shù)形結(jié)合即可得到答案.【詳解】作出可行域如圖所示設(shè)圓心為,則,過作直線的垂線,垂足為B,顯然,又易得,所以,,故.故選:D.【點(diǎn)睛】本題考查與線性規(guī)劃相關(guān)的取值范圍問題,涉及到向量的線性運(yùn)算、數(shù)量積、點(diǎn)到直線的距離等知識(shí),考查學(xué)生轉(zhuǎn)化與劃歸的思想,是一道中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
先求出導(dǎo)數(shù),再在定義域上考慮導(dǎo)數(shù)的符號(hào)為正時(shí)對應(yīng)的的集合,從而可得函數(shù)的單調(diào)增區(qū)間.【詳解】函數(shù)的定義域?yàn)?,令,則,故函數(shù)的單調(diào)增區(qū)間為:.故答案為:.【點(diǎn)睛】本題考查導(dǎo)數(shù)在函數(shù)單調(diào)性中的應(yīng)用,注意先考慮函數(shù)的定義域,再考慮導(dǎo)數(shù)在定義域上的符號(hào),本題屬于基礎(chǔ)題.14、【解析】
由題意可在定義域上有四個(gè)不同的解等價(jià)于關(guān)于原點(diǎn)對稱的函數(shù)與函數(shù)的圖象有兩個(gè)交點(diǎn),運(yùn)用參變分離和構(gòu)造函數(shù),進(jìn)而借助導(dǎo)數(shù)分析單調(diào)性與極值,畫出函數(shù)圖象,即可得到所求范圍.【詳解】已知定義在上的函數(shù)若在定義域上有四個(gè)不同的解等價(jià)于關(guān)于原點(diǎn)對稱的函數(shù)與函數(shù)f(x)=lnx-x(x>0)的圖象有兩個(gè)交點(diǎn),聯(lián)立可得有兩個(gè)解,即可設(shè),則,進(jìn)而且不恒為零,可得在單調(diào)遞增.由可得時(shí),單調(diào)遞減;時(shí),單調(diào)遞增,即在處取得極小值且為作出的圖象,可得時(shí),有兩個(gè)解.故答案為:【點(diǎn)睛】本題考查利用利用導(dǎo)數(shù)解決方程的根的問題,還考查了等價(jià)轉(zhuǎn)化思想與函數(shù)對稱性的應(yīng)用,屬于難題.15、4【解析】∵∴根據(jù)正弦定理與余弦定理可得:,即∵∴∵∴故答案為416、3【解析】
分別用1和進(jìn)行分類討論即可【詳解】當(dāng)?shù)谝粋€(gè)因式取1時(shí),第二個(gè)因式應(yīng)取含的項(xiàng),則對應(yīng)系數(shù)為:;當(dāng)?shù)谝粋€(gè)因式取時(shí),第二個(gè)因式應(yīng)取含的項(xiàng),則對應(yīng)系數(shù)為:;故的展開式中的系數(shù)為.故答案為:3【點(diǎn)睛】本題考查二項(xiàng)式定理中具體項(xiàng)對應(yīng)系數(shù)的求解,屬于基礎(chǔ)題三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),();(2).【解析】
(1)根據(jù)是等差數(shù)列,,、、成等比數(shù)列,列兩個(gè)方程即可求出,從而求得,代入化簡即可求得;(2)化簡后求和為裂項(xiàng)相消求和,分組求和即可,注意討論公比是否為1.【詳解】(1)由題意知,,,由得,解得.又,得,解得或(舍).,.又(),().(2),①當(dāng)時(shí),.②當(dāng)時(shí),.【點(diǎn)睛】此題等差數(shù)列的通項(xiàng)公式的求解,裂項(xiàng)相消求和等知識(shí)點(diǎn),考查了化歸和轉(zhuǎn)化思想,屬于一般性題目.18、(1)見解析;(2).【解析】
(1)利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性,并設(shè),則,,將不等式等價(jià)轉(zhuǎn)化為證明,構(gòu)造函數(shù),利用導(dǎo)數(shù)分析函數(shù)在區(qū)間上的單調(diào)性,通過推導(dǎo)出來證得結(jié)論;(2)構(gòu)造函數(shù),對實(shí)數(shù)分、、,利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性,求出函數(shù)的最小值,再通過構(gòu)造新函數(shù),利用導(dǎo)數(shù)求出函數(shù)的最大值,可得出的最大值.【詳解】(1),,所以,函數(shù)單調(diào)遞增,所以,當(dāng)時(shí),,此時(shí),函數(shù)單調(diào)遞減;當(dāng)時(shí),,此時(shí),函數(shù)單調(diào)遞增.要證,即證.不妨設(shè),則,,下證,即證,構(gòu)造函數(shù),,所以,函數(shù)在區(qū)間上單調(diào)遞增,,,即,即,,且函數(shù)在區(qū)間上單調(diào)遞增,所以,即,故結(jié)論成立;(2)由恒成立,得恒成立,令,則.①當(dāng)時(shí),對任意的,,函數(shù)在上單調(diào)遞增,當(dāng)時(shí),,不符合題意;②當(dāng)時(shí),;③當(dāng)時(shí),令,得,此時(shí),函數(shù)單調(diào)遞增;令,得,此時(shí),函數(shù)單調(diào)遞減...令,設(shè),則.當(dāng)時(shí),,此時(shí)函數(shù)單調(diào)遞增;當(dāng)時(shí),,此時(shí)函數(shù)單調(diào)遞減.所以,函數(shù)在處取得最大值,即.因此,的最大值為.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)證明不等式,同時(shí)也考查了利用導(dǎo)數(shù)求代數(shù)式的最值,構(gòu)造新函數(shù)是解答的關(guān)鍵,考查推理能力,屬于難題.19、(1)見解析;(2)【解析】
(1)由折疊過程知與平面垂直,得,再取中點(diǎn),可證與平面垂直,得,從而可得線面垂直,再得線線垂直;(2)由已知得為中點(diǎn),以為原點(diǎn),所在直線為軸,在平面內(nèi)過作的垂線為軸建立空間直角坐標(biāo)系,由已知求出線段長,得出各點(diǎn)坐標(biāo),用平面的法向量計(jì)算二面角的余弦.【詳解】(1)易知與平面垂直,∴,連接,取中點(diǎn),連接,由得,,∴平面,平面,∴,又,∴平面,∴;(2)由,知是中點(diǎn),令,則,由,,∴,解得,故.以為原點(diǎn),所在直線為軸,在平面內(nèi)過作的垂線為軸建立空間直角坐標(biāo)系,如圖,則,,,設(shè)平面的法向量為,則,取,則.又易知平面的一個(gè)法向量為,.∴二面角的余弦值為.【點(diǎn)睛】本題考查證明線線垂直,考查用空間向量法求二面角.證線線垂直,一般先證線面垂直,而證線面垂直又要證線線垂直,注意線線垂直、線面垂直及面面垂直的轉(zhuǎn)化.求空間角,常用方法就是建立空間直角坐標(biāo)系,用空間向量法求空間角.20、(1)證明見解析(2)證明見解析【解析】
(1)先根據(jù)絕對值不等式求得的最大值,從而得到,再利用基本不等式進(jìn)行證明;(2)利用基本不等式變形得,兩邊開平方得到新的不等式,利用同理可得另外兩個(gè)不等式,再進(jìn)行不等式相加,即可得答案.【詳解】(1)∵,∴.∵,,,∴,∴,∴.(2)∵,,即兩邊開平方得.同理可得,.三式相加,得.【點(diǎn)睛】本題考查絕對值不等式、應(yīng)用基本不等式證明不等式,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和推理論證能力.21、(1);(2)4【解析】
(1)分類討論,求解x的范圍,取并集,得到絕對值不等式的解集,即得解;(2)轉(zhuǎn)化原不等式為:,利用均值不等式即得解.【詳解】(1)當(dāng)時(shí)不等式可化為當(dāng)時(shí),不等式可化為;當(dāng)時(shí),不等式可化為;綜上不等式的解集為.(2)由(1)有,,,,即而當(dāng)且僅當(dāng):,即,即時(shí)等號(hào)成立∴,綜上實(shí)數(shù)最大值為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026福建福州墨爾本理工職業(yè)學(xué)院招聘備考題庫(含答案詳解)
- 2026年定點(diǎn)幫扶資源整合優(yōu)化方法
- 2026福建省汽車工業(yè)集團(tuán)有限公司招聘160人備考題庫及1套完整答案詳解
- 城市公園物資采購與管理手冊
- 南昌印鈔有限公司2026年度招聘備考題庫【11人】及答案詳解(易錯(cuò)題)
- 2026年鄉(xiāng)村數(shù)字文化建設(shè)實(shí)務(wù)課
- 防洪防澇設(shè)施檔案資料管理手冊
- 職業(yè)共病管理中的跨區(qū)域協(xié)作模式
- 供應(yīng)部年終工作總結(jié)
- 職業(yè)健康監(jiān)護(hù)中的患者隱私保護(hù)措施
- 冷庫安全生產(chǎn)責(zé)任制制度
- 陜西省西安市高新一中、交大附中、師大附中2026屆高二生物第一學(xué)期期末調(diào)研模擬試題含解析
- 2025兒童心肺復(fù)蘇與急救指南詳解課件
- 2026年常州機(jī)電職業(yè)技術(shù)學(xué)院單招綜合素質(zhì)考試題庫及答案1套
- 2026年稅務(wù)師執(zhí)業(yè)規(guī)范考試題目含答案
- 2026年江蘇農(nóng)林職業(yè)技術(shù)學(xué)院單招職業(yè)適應(yīng)性測試模擬測試卷必考題
- 廣東省廣州市八區(qū)聯(lián)考2024-2025學(xué)年高一上學(xué)期期末教學(xué)質(zhì)量監(jiān)測數(shù)學(xué)試卷(含答案)
- 選舉法知識(shí)課件
- 蒸汽管道安裝現(xiàn)場施工方案
- 運(yùn)維檔案管理制度
- 2024年中考英語真題分類匯編-記敘文閱讀理解(含答案)
評論
0/150
提交評論