版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2026屆湖北省黃岡實驗學(xué)校高二上數(shù)學(xué)期末質(zhì)量檢測試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.內(nèi)角、、的對邊分別為、、,若,,,則()A. B.C. D.2.圓關(guān)于直線對稱,則的最小值是()A. B.C. D.3.已知數(shù)列的通項公式為,且數(shù)列是遞增數(shù)列,則實數(shù)的取值范圍是()A. B.C. D.4.接種疫苗是預(yù)防控制新冠疫情最有效的方法,我國自2021年1月9日起實施全民免費接種新冠疫苗并持續(xù)加快推進接種工作.某地為方便居民接種,共設(shè)置了A、B、C三個新冠疫苗接種點,每位接種者可去任一個接種點接種.若甲、乙兩人去接種新冠疫苗,則兩人不在同一接種點接種疫苗的概率為()A. B.C. D.5.若圓的半徑為,則實數(shù)()A. B.-1C.1 D.6.設(shè)a,b,c分別是內(nèi)角A,B,C的對邊,若,,依次成公差不為0的等差數(shù)列,則()A.a,b,c依次成等差數(shù)列 B.,,依次成等差數(shù)列C.,,依次成等比數(shù)列 D.,,依次成等比數(shù)列7.圓與圓的位置關(guān)系是()A.相交 B.相離C.內(nèi)切 D.外切8.在等差數(shù)列中,,則()A.9 B.6C.3 D.19.已知橢圓(a>b>0)的離心率為,則=()A. B.C. D.10.已知橢圓的一個焦點坐標為,則的值為()A.1 B.3C.9 D.8111.已知隨機變量,,則的值為()A.0.24 B.0.26C.0.68 D.0.7612.數(shù)列滿足,,則()A. B.C. D.2二、填空題:本題共4小題,每小題5分,共20分。13.過拋物線的焦點作直線交拋物線于兩點,為坐標原點,記直線的斜率分別為,則______.14.為增強廣大師生生態(tài)文明意識,大力推進國家森林城市建設(shè)創(chuàng)建進程,某班26名同學(xué)在一段直線公路一側(cè)植樹,每人植一棵(各自挖坑種植),相鄰兩棵樹相距均為10米,在同學(xué)們挖坑期間,運到的樹苗集中放置在了某一樹坑旁邊,然后每位同學(xué)挖好自己的樹坑后,均從各自樹坑出發(fā)去領(lǐng)取樹苗.記26位同學(xué)領(lǐng)取樹苗往返所走的路程總和為,則的最小值為______米15.將某校全體高一年級學(xué)生期末數(shù)學(xué)成績分為6組:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]加以統(tǒng)計,得到如圖所示的頻率分布直方圖,現(xiàn)需要隨機抽取60名學(xué)生進行問卷調(diào)查,采用按成績分層隨機抽樣,則應(yīng)抽取成績不少于60分的學(xué)生人數(shù)為_______________.16.已知,若在區(qū)間上有且只有一個極值點,則a的取值范圍是______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在等差數(shù)列中,,.(1)求的通項公式;(2)求數(shù)列的前項和.18.(12分)已知的展開式中前三項的二項式系數(shù)之和為46,(1)求n;(2)求展開式中系數(shù)最大的項19.(12分)已知直線,,,其中與的交點為P(1)求過點P且與平行的直線方程;(2)求以點P為圓心,截所得弦長為8的圓的方程20.(12分)已如橢圓C:=1(a>b>0)的有頂點為M(2,0),且離心率e=,點A,B是橢圓C上異于點M的不同的兩點(Ⅰ)求橢圓C的方程;(Ⅱ)設(shè)直線MA與直線MB的斜率分別為k1,k2,若k1?k2=,證明:直線AB一定過定點21.(12分)如圖,正方形和四邊形所在的平面互相垂直,.(1)求證:平面;(2)求平面與平面的夾角.22.(10分)已知函數(shù)f(x)=(1)求函數(shù)f(x)在x=1處的切線方程;(2)求證:
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】利用正弦定理可求得邊的長.【詳解】由正弦定理得.故選:C.2、C【解析】先求出圓的圓心坐標,根據(jù)條件可得直線過圓心,從而可得,然后由,展開利用均值不等式可得答案.【詳解】由圓可得標準方程為,因為圓關(guān)于直線對稱,該直線經(jīng)過圓心,即,,,當且僅當,即時取等號,故選:C.3、C【解析】利用遞增數(shù)列的定義即可.【詳解】由,∴,即是小于2n+1的最小值,∴,故選:C4、C【解析】利用古典概型的概率公式可求出結(jié)果【詳解】由題知,基本事件總數(shù)為甲、乙兩人不在同一接種點接種疫苗的基本事件數(shù)為由古典概型概率計算公式可得所求概率故選:5、B【解析】將圓的方程化為標準方程,即可求出半徑的表達式,從而可求出的值.【詳解】由題意,圓的方程可化為,所以半徑為,解得.故選:B.【點睛】本題考查圓的方程,考查學(xué)生的計算求解能力,屬于基礎(chǔ)題.6、B【解析】由等差數(shù)列的性質(zhì)得,利用正弦定理、余弦定理推導(dǎo)出,從而,,依次成等差數(shù)列.【詳解】解:∵a,b,c分別是內(nèi)角A,B,C的對邊,,,依次成公差不為0的等差數(shù)列,∴,根據(jù)正弦定理可得,∴,∴,∴,∴,,依次成等差數(shù)列.故選:B.【點睛】本題考查三個數(shù)成等差數(shù)列或等比數(shù)列的判斷,考查等差數(shù)列、等比數(shù)列的性質(zhì)、正弦定理、余弦定理等基礎(chǔ)知識,考查運算求解能力,考查函數(shù)與方程思想,屬于中檔題.7、A【解析】求出兩圓的圓心及半徑,求出圓心距,從而可得出結(jié)論.【詳解】解:圓的圓心為,半徑為,圓圓心為,半徑為,則兩圓圓心距,因為,所以兩圓相交.故選:A.8、A【解析】直接由等差中項得到結(jié)果.詳解】由得.故選:A.9、D【解析】由離心率得,再由轉(zhuǎn)化為【詳解】因為,所以8a2=9b2,所以故選:D.10、A【解析】根據(jù)條件,利用橢圓標準方程中長半軸長a,短半軸長b,半焦距c關(guān)系列式計算即得.【詳解】由橢圓的一個焦點坐標為,則半焦距c=2,于是得,解得,所以值為1.故選:A11、A【解析】根據(jù)給定條件利用正態(tài)分布的對稱性計算作答.【詳解】因隨機變,,有P(ξ<4)=P(ξ≤4)=0.76,由正態(tài)分布的對稱性得:,所以的值為0.24.故選:A12、C【解析】根據(jù)已知分析數(shù)列周期性,可得答案【詳解】解:∵數(shù)列滿足,,∴,,,,故數(shù)列以4為周期呈現(xiàn)周期性變化,由,故,故選C【點睛】本題考查的知識點是數(shù)列的遞推公式,數(shù)列的周期性,難度中檔二、填空題:本題共4小題,每小題5分,共20分。13、【解析】過焦點作直線要分為有斜率和斜率不存在兩種情況進行分類討論.【詳解】拋物線的焦點當過焦點的直線斜率不存在時,直線方程可設(shè)為,不妨令則,故當過焦點的直線斜率存在時,直線方程可設(shè)為,令由整理得則,綜上,故答案為:14、【解析】根據(jù)對稱性易知:當樹苗放在第13或14個坑,26位同學(xué)領(lǐng)取樹苗往返所走的路程總和最小,再應(yīng)用等差數(shù)列前n項和的求法求26位同學(xué)領(lǐng)取樹苗往返所走的路程總和.【詳解】將26個同學(xué)對應(yīng)的26個坑分左右各13個坑,∴根據(jù)對稱性:樹苗放在左邊13個坑,與放在對稱右邊的13個坑,26個同學(xué)所走的總路程對應(yīng)相等,∴當樹苗放在第13個坑,26位同學(xué)領(lǐng)取樹苗往返所走的路程總和最小,此時,左邊13位同學(xué)所走的路程分別為,右邊13位同學(xué)所走的路程分別為,∴最小值為米.故答案為:.15、48【解析】根據(jù)頻率分布直方圖,求出成績不少于分的頻率,然后根據(jù)頻數(shù)頻率總數(shù),即可求出結(jié)果【詳解】根據(jù)頻率分布直方圖,成績不低于(分)的頻率為,由于需要隨機抽取名學(xué)生進行問卷調(diào)查,利用樣本估計總體的思想,則應(yīng)抽取成績不少于60分的學(xué)生人數(shù)為人故答案為:16、【解析】求導(dǎo)得,進而根據(jù)題意在上有且只有一個變號零點,再根據(jù)零點的存在性定理求解.【詳解】解:,∵在區(qū)間上有且只有一個極值點,∴在上有且只有一個變號零點,∴,解得∴a的取值范圍是.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)設(shè)的公差為,根據(jù)題意列出關(guān)于和的方程組,求解方程組,再根據(jù)等差數(shù)列的通項公式,即可求出結(jié)果.(2)對數(shù)列中項的正負情況進行討論,再結(jié)合等差數(shù)列的前項和公式,即可求出結(jié)果.【小問1詳解】解:設(shè)的公差為d,因為,,所以解得故.【小問2詳解】解:設(shè)的前項和為,則.當時,,所以所以;當時,.所以.18、(1)9(2)【解析】(1)根據(jù)要求列出方程,求出的值;(2)求出二項式展開式的通項,列出不等式組,求出的取值范圍,從而求出,得到系數(shù)最大項.【小問1詳解】由題意得:,解得:或,因為,所以(舍去),從而【小問2詳解】二項式的展開式通項為:,則系數(shù)為,要求其最大值,則只要滿足,即9!r!9-r!?2r≥9!r-1!10-r19、(1);(2).【解析】(1)首先求、的交點坐標,根據(jù)的斜率,應(yīng)用點斜式寫出過P且與平行的直線方程;(2)根據(jù)弦心距、弦長、半徑的關(guān)系求圓的半徑,結(jié)合P的坐標寫出圓的方程.【小問1詳解】聯(lián)立、得:,可得,故,又的斜率為,則過P且與平行的直線方程,∴所求直線方程為.【小問2詳解】由(1),P到的距離,∴以P為圓心,截所得弦長為8的圓的半徑,∴所求圓的方程為.20、(I);(II)證明見解析.【解析】(I)根據(jù)頂點坐標求得,根據(jù)離心率求得,由此求得,進而求得橢圓方程.(II)設(shè)出直線的方程,聯(lián)立直線的方程和橢圓方程,寫出根與系數(shù)關(guān)系,根據(jù),求得的關(guān)系式,由此判斷直線過定點.【詳解】(I)由于是橢圓的頂點,所以,由于,所以,所以,所以橢圓方程為.(II)由于是橢圓上異于點的不同的兩點,所以可設(shè)直線的方程為,設(shè),由消去并化簡得,所以,即.,,,,解得,所以直線的方程為,過定點.【點睛】本小題主要考查橢圓方程的求法,考查直線和橢圓的位置關(guān)系,考查橢圓中的定值問題.21、(1)證明見解析(2)【解析】(1)由題意可證得,所以以C為坐標原點,所在直線分別為x軸,y軸,z軸建立空間直角坐標系,利用空間向量證明,(2)求出兩個平面的法向量,利用空間向量求解【小問1詳解】∵平面平面,平面平面,∴平面,∴,以C為坐標原點,所在直線分別為x軸,y軸,z軸建立空間直角坐標系,則,.設(shè)平面的法向量為,則,令,則,∵平面,∴∥平面.【小問2詳解】,設(shè)平面的法向量
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 黃岡2025年湖北黃岡市黃州區(qū)事業(yè)單位招聘三支一扶服務(wù)期滿人員12人筆試歷年參考題庫附帶答案詳解
- 長沙2025年湖南長沙縣百熙教育集團校聘教師(百熙實驗中學(xué))招聘93人筆試歷年參考題庫附帶答案詳解
- 金華浙江金華義烏市中心醫(yī)院口腔科非編人員招聘筆試歷年參考題庫附帶答案詳解
- 赤峰2025年內(nèi)蒙古赤峰市喀喇沁旗事業(yè)單位引進人才39人筆試歷年參考題庫附帶答案詳解
- 蕪湖2025年安徽蕪湖無為市城區(qū)學(xué)校選調(diào)教師90人筆試歷年參考題庫附帶答案詳解
- 鹽城2025年江蘇鹽城響水縣衛(wèi)健系統(tǒng)事業(yè)單位招聘26人筆試歷年參考題庫附帶答案詳解
- 溫州浙江溫州市甌海中心區(qū)建設(shè)中心編外人員招聘筆試歷年參考題庫附帶答案詳解
- 洛陽2025年河南洛陽市新安縣引進研究生學(xué)歷人才37人筆試歷年參考題庫附帶答案詳解
- 無錫2025年江蘇無錫市第五人民醫(yī)院招聘編外專業(yè)技術(shù)人員4人(二)筆試歷年參考題庫附帶答案詳解
- 安康2025年陜西安康市農(nóng)業(yè)農(nóng)村局招聘高層次人才筆試歷年參考題庫附帶答案詳解
- 物業(yè)項目綜合服務(wù)方案
- 2025-2026學(xué)年北京市西城區(qū)初二(上期)期末考試物理試卷(含答案)
- 公路工程施工安全技術(shù)與管理課件 第09講 起重吊裝
- 企業(yè)管理 華為會議接待全流程手冊SOP
- 供水企業(yè)制度流程規(guī)范
- 2026年城投公司筆試題目及答案
- 北京市東城區(qū)2025-2026學(xué)年高三上學(xué)期期末考試英語 有答案
- 框架柱混凝土澆筑施工方案(完整版)
- 河南省2025年普通高等學(xué)校對口招收中等職業(yè)學(xué)校畢業(yè)生考試語文試題 答案
- 預(yù)應(yīng)力管樁-試樁施工方案
- GB/T 3500-1998粉末冶金術(shù)語
評論
0/150
提交評論