重慶市三峽名校聯(lián)盟高2026屆數(shù)學高二上期末聯(lián)考模擬試題含解析_第1頁
重慶市三峽名校聯(lián)盟高2026屆數(shù)學高二上期末聯(lián)考模擬試題含解析_第2頁
重慶市三峽名校聯(lián)盟高2026屆數(shù)學高二上期末聯(lián)考模擬試題含解析_第3頁
重慶市三峽名校聯(lián)盟高2026屆數(shù)學高二上期末聯(lián)考模擬試題含解析_第4頁
重慶市三峽名校聯(lián)盟高2026屆數(shù)學高二上期末聯(lián)考模擬試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

重慶市三峽名校聯(lián)盟高2026屆數(shù)學高二上期末聯(lián)考模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.下列說法:①將一組數(shù)據(jù)中的每個數(shù)據(jù)都加上或減去同一個常數(shù)后,方差不變;②從統(tǒng)計量中得知有的把握認為吸煙與患肺病有關系,是指有的可能性使得推斷出現(xiàn)錯誤;③回歸直線就是散點圖中經(jīng)過樣本數(shù)據(jù)點最多的那條直線;④如果兩個變量的線性相關程度越高,則線性相關系數(shù)就越接近于;其中錯誤說法的個數(shù)是()A. B.C. D.2.2020年北京時間11月24日我國嫦娥五號探月飛行器成功發(fā)射.嫦娥五號是我國探月工程“繞、落、回”三步走的收官之戰(zhàn),經(jīng)歷發(fā)射入軌、地月轉移、近月制動、環(huán)月飛行、著陸下降、月面工作、月面上升、交會對接與樣品轉移、環(huán)月等待、月地轉移、再入回收等11個關鍵階段.在經(jīng)過交會對接與樣品轉移階段后,若嫦娥五號返回器在近月點(離月面最近的點)約為200公里,遠月點(離月面最遠的點)約為8600公里,以月球中心為一個焦點的橢圓形軌道上等待時間窗口和指令進行下一步動作,月球半徑約為1740公里,則此橢圓軌道的離心率約為()A.0.32 B.0.48C.0.68 D.0.823.已知雙曲線的離心率,點是拋物線上的一動點,到雙曲線的上焦點的距離與到直線的距離之和的最小值為,則該雙曲線的方程為A. B.C. D.4.已知橢圓的左,右焦點分別為,,直線與C交于點M,N,若四邊形的面積為且,則C的離心率為()A. B.C. D.5.“x>1”是“x>0”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件6.若圓的半徑為,則實數(shù)()A. B.-1C.1 D.7.過點的直線在兩坐標軸上的截距之和為零,則該直線方程為()A. B.C.或 D.或8.已知圓,則圓C關于直線對稱的圓的方程為()A. B.C. D.9.2021年4月29日,中國空間站天和核心艙發(fā)射升空,這標志著中國空間站在軌組裝建造全面展開,我國載人航天工程“三步走”戰(zhàn)略成功邁出第三步.到今天,天和核心艙在軌已經(jīng)九個多月.在這段時間里,空間站關鍵技術驗證階段完成了5次發(fā)射、4次航天員太空出艙、1次載人返回、1次太空授課等任務.一般來說,航天器繞地球運行的軌道近似看作為橢圓,其中地球的球心是這個橢圓的一個焦點,我們把橢圓軌道上距地心最近(遠)的一點稱作近(遠)地點,近(遠)地點與地球表面的距離稱為近(遠)地點高度.已知天和核心艙在一個橢圓軌道上飛行,它的近地點高度大約351km,遠地點高度大約385km,地球半徑約6400km,則該軌道的離心率為()A. B.C. D.10.已知是定義在上的函數(shù),其導函數(shù)為,且,且,則不等式的解集為()A. B.C. D.11.2019年湖南等8省公布了高考改革綜合方案將采取“”模式即語文、數(shù)學、英語必考,考生首先在物理、歷史中選擇1門,然后在思想政治、地理、化學、生物中選擇2門,一名同學隨機選擇3門功課,則該同學選到歷史、地理兩門功課的概率為()A. B.C. D.12.求點關于x軸的對稱點的坐標為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知為拋物線:的焦點,為拋物線上在第一象限的點.若為的中點,為拋物線的頂點,則直線斜率的最大值為______.14.若圓錐的軸截面是頂角為的等腰三角形,且圓錐的側面積為,則該圓錐的體積為______.15.在正三棱柱中,,點P滿足,其中,,則下列說法中,正確的有_________(請?zhí)钊胨姓_說法的序號)①當時,的周長為定值②當時,三棱錐的體積為定值③當時,有且僅有一個點P,使得④當時,有且僅有一個點P,使得平面16.已知正項數(shù)列的前n項和為,且,則__________,滿足不等式的最大整數(shù)為__________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知動點M到點F(0,)的距離與它到直線的距離相等(1)求動點M的軌跡C的方程;(2)過點P(,-1)作C的兩條切線PA,PB,切點分別為A,B,求直線AB的方程18.(12分)在如圖所示的多面體中,且,,,且,,且,平面,(1)求證:;(2)求平面與平面夾角的余弦值19.(12分)已知等差數(shù)列的前項和為,,且.(1)求數(shù)列的通項公式;(2)設數(shù)列的前項和為,證明:.20.(12分)已知拋物線:上的點到其準線的距離為5.(1)求拋物線的方程;(2)已知為原點,點在拋物線上,若的面積為6,求點的坐標.21.(12分)已知圓C的圓心在直線上,圓心到x軸的距離為2,且截y軸所得弦長為(1)求圓C的方程;(2)若圓C上至少有三個不同的點到直線的距離為,求實數(shù)k的取值范圍22.(10分)在中,,,請再從條件①、條件②這兩個條件中選擇一個作為已知,然后解答下列問題.(1)求角的大??;(2)求的面積.條件①:;條件②:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】根據(jù)統(tǒng)計的概念逐一判斷即可.【詳解】對于①,方差反映一組數(shù)據(jù)的波動大小,將一組數(shù)據(jù)中的每個數(shù)據(jù)都加上或減去同一個常數(shù)后,方差不變,①正確;對于②從統(tǒng)計量中得知有的把握認為吸煙與患肺病有關系,是指有的可能性使得推斷出現(xiàn)錯誤;故②正確;對于③,線性回歸方程必過樣本中心點,回歸直線不一定就是散點圖中經(jīng)過樣本數(shù)據(jù)點最多的那條直線,也可能不過任何一個點;③不正確;對于④,如果兩個變量的線性相關程度越高,則線性相關系數(shù)就越接近于,不正確,應為相關系數(shù)的絕對值就越接近于;綜上,其中錯誤的個數(shù)是;故選:C.2、C【解析】由題意可知,求出的值,從而可求出橢圓的離心率【詳解】解:由題意得,解得,所以離心率,故選:C3、B【解析】先根據(jù)離心率得,再根據(jù)拋物線定義得最小值為(為拋物線焦點),解得,即得結果.【詳解】因為雙曲線的離心率,所以,設為拋物線焦點,則,拋物線準線方程為,因此到雙曲線的上焦點的距離與到直線的距離之和等于,因為,所以,即,即雙曲線的方程為,選B.【點睛】本題考查雙曲線方程、離心率以及拋物線定義,考查基本分析求解能力,屬中檔題.4、A【解析】根據(jù)題意可知四邊形為平行四邊形,設,進而得,根據(jù)四邊形面積求出點M的坐標,再代入橢圓方程得出關于e的方程,解方程即可.【詳解】如圖,不妨設點在第一象限,由橢圓的對稱性得四邊形為平行四邊形,設點,由,得,因為四邊形的面積為,所以,得,由,得,解得,所以,即點,代入橢圓方程,得,整理得,由,得,解得,由,得.故選:A5、A【解析】根據(jù)充分、必要條件間的推出關系,判斷“x>1”與“x>0”的關系.【詳解】“x>1”,則“x>0”,反之不成立.∴“x>1”是“x>0”的充分不必要條件.故選:A.6、B【解析】將圓的方程化為標準方程,即可求出半徑的表達式,從而可求出的值.【詳解】由題意,圓的方程可化為,所以半徑為,解得.故選:B.【點睛】本題考查圓的方程,考查學生的計算求解能力,屬于基礎題.7、D【解析】分截距為零和不為零兩種情況討論即可﹒【詳解】當直線過原點時,滿足題意,方程為,即2x-y=0;當直線不過原點時,設方程為,∵直線過(1,2),∴,∴,∴方程為,故選:D﹒8、B【解析】求得圓的圓心關于直線的對稱點,由此求得對稱圓的方程.【詳解】設圓的圓心關于直線的對稱點為,則,所以對稱圓的方程為.故選:B9、A【解析】根據(jù)遠地點和近地點,求出軌道即橢圓的半長軸和半焦距,即可求得答案.【詳解】設橢圓的半長軸為a,半焦距為c.則根據(jù)題意得;解得,故該軌道即橢圓的離心率為,故選:A10、B【解析】令,再結合,和已知條件將問題轉化為,最后結合單調性求解即可.【詳解】解:令,則,因為,所以,即函數(shù)為上的增函數(shù),因為,不等式可化為,所以,故不等式的解集為故選:B11、A【解析】先由列舉法計算出基本事件的總數(shù),然后再求出該同學選到歷史、地理兩門功課的基本事件的個數(shù),基本事件個數(shù)比即為所求概率.【詳解】由題意,記物理、歷史分別為、,從中選擇1門;記思想政治、地理、化學、生物為、、、,從中選擇2門;則該同學隨機選擇3門功課,所包含的基本事件有:,,,,,,,,,,,,共個基本事件;該同學選到歷史、地理兩門功課所包含的基本事件有:,,共個基本事件;該同學選到物理、地理兩門功課的概率為.故選:A.【點睛】本題考查求古典概型的概率,屬于基礎題型.12、D【解析】根據(jù)點關于坐標軸的對稱點特征,直接寫出即可.【詳解】A點關于x軸對稱點,橫坐標不變,縱坐標與豎坐標為原坐標的相反數(shù),故點的坐標為,故選:D二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】由題意,可得,設,,,根據(jù)是線段的中點,求出的坐標,可得直線的斜率,利用基本不等式即可得結論【詳解】解:由題意,可得,設,,,,是線段的中點,則,,,當且僅當時取等號,直線的斜率的最大值為1故答案為:114、【解析】設圓錐的高為,可得出圓錐的母線長為,以及圓錐的底面半徑為,利用圓錐的側面積公式求出的值,再利用錐體的體積公式可求得結果.【詳解】設圓錐的高為,由于圓錐的軸截面是頂角為的等腰三角形,則軸截面三角形的底角為,故該圓錐的母線長為,底面半徑為,圓錐的側面積為,可得,因此,該圓錐的體積為.故答案為:.15、②④【解析】①結合得到P在線段上,結合圖形可知不同位置下周長不同;②由線面平行得到點到平面距離不變,故體積為定值;③結合圖形得到不同位置下有,判斷出③錯誤;④結合圖形得到有唯一的點P,使得線面垂直.【詳解】由題意得:,,,所以P為正方形內一點,①,當時,,即,,所以P在線段上,所以周長為,如圖1所示,當點P在處時,,故①錯誤;②,如圖2,當時,即,即,,所以P在上,,因為∥BC,平面,平面,所以點P到平面距離不變,即h不變,故②正確;③,當時,即,如圖3,M為中點,N為BC的中點,P是MN上一動點,易知當時,點P與點N重合時,由于△ABC為等邊三角形,N為BC中點,所以AN⊥BC,又⊥BC,,所以BN⊥平面,因為平面,則,當時,點P與點M重合時,可證明出⊥平面,而平面,則,即,故③錯誤;④,當時,即,如圖4所示,D為的中點,E為的中點,則P為DE上一動點,易知,若平面,只需即可,取的中點F,連接,又因為平面,所以,若,只需平面,即即可,如圖5,易知當且僅當點P與點E重合時,故只有一個點P符合要求,使得平面,故④正確.故選:②④【點睛】立體幾何的壓軸題,通常情況下要畫出圖形,利用線面平行,線面垂直及特殊點,特殊值進行排除選項,或者用等體積法進行轉化等思路進行解決.16、①.##②.【解析】由得到,即可得到數(shù)列是首項為1,公差為1的等差數(shù)列,從而求出,再根據(jù)求出,令,利用裂項相消法求出,即可求出的取值范圍,從而得解;【詳解】解:由,令,得,,解得;當時,,即因此,數(shù)列是首項為1,公差為1的等差數(shù)列,,即所以,令,所以,所以,則最大整數(shù)為;故答案為:;;三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)根據(jù)拋物線的定義或者直接列式化簡即可求出;(2)方法一:設切線的方程為:,與拋物線方程聯(lián)立,由即可求出的值,從而得出點的坐標,即可求出直線方程【小問1詳解】設M(x,y),則解得.所以該拋物線的方程為【小問2詳解】[方法一]:依題意,切線的斜率存在,設切線的方程為:,與拋物線方程聯(lián)立,得,令,得或.從而或,解得或,所以切點A(-1,),B(2,2),直線AB的斜率為,所以直線AB的方程為,整理得.[方法二]:由可得,所以,設切點為(),則切線的斜率,又切線過點P(,-1),所以,整理得,解得或,所以切點的坐標為A(-1,),B(2,2),所以直線AB的斜率為,所以直線AB的方程為,整理得18、(1)證明見解析(2)【解析】(1)根據(jù)線面垂直的性質可得,,如圖所示,以為坐標原點建立空間直角坐標系,證明即可得證;(2)求出平面與平面的法向量,再利用向量法即可得解.【小問1詳解】證明:因為平面,平面,平面,所以,且,因為,如圖所示,以為坐標原點建立空間直角坐標系,則,,,,,,,所以,,,所以;【小問2詳解】,設平面的法向量為,則,即,令,有,設平面的法向量為,則,即,令,有,設平面和平面的夾角為,,所以平面和平面的夾角的余弦值為19、(1);(2)證明見解析.【解析】(1)根據(jù)等差數(shù)列的性質及題干條件,可求得,代入公式,即可求得數(shù)列的通項公式;(2)由(1)可得,利用裂項相消求和法,即可求得,即可得證.【詳解】解:(1)設數(shù)列的公差為,在中,令,得,即,故①.由得,所以②.由①②解得,.所以數(shù)列的通項公式為:.(2)由(1)可得,所以,故,所以.因為,所以.【點睛】數(shù)列求和的常見方法:(1)倒序相加法:如果一個數(shù)列的前n項中首末兩端等距離的兩項的和相等或等于同一個常數(shù),那么求這個數(shù)列的前n項和可以用倒序相加法;(2)錯位相減法:如果一個數(shù)列的各項是由一個等差數(shù)列和一個等比數(shù)列的對應項之積構成的,那么這個數(shù)列的前n項和可以用錯位相減法來求;(3)裂項相消法:把數(shù)列的通項拆成兩項之差,在求和時,中間的一些項可相互抵消,從而求得其和;(4)分組轉化法:一個數(shù)列的通項公式是由若干個等差數(shù)列或等比

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論