五邑大學(xué)《數(shù)據(jù)分析與挖掘》2023-2024學(xué)年第二學(xué)期期末試卷_第1頁
五邑大學(xué)《數(shù)據(jù)分析與挖掘》2023-2024學(xué)年第二學(xué)期期末試卷_第2頁
五邑大學(xué)《數(shù)據(jù)分析與挖掘》2023-2024學(xué)年第二學(xué)期期末試卷_第3頁
五邑大學(xué)《數(shù)據(jù)分析與挖掘》2023-2024學(xué)年第二學(xué)期期末試卷_第4頁
五邑大學(xué)《數(shù)據(jù)分析與挖掘》2023-2024學(xué)年第二學(xué)期期末試卷_第5頁
已閱讀5頁,還剩1頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共3頁五邑大學(xué)

《數(shù)據(jù)分析與挖掘》2023-2024學(xué)年第二學(xué)期期末試卷題號一二三四總分得分批閱人一、單選題(本大題共20個小題,每小題1分,共20分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、在構(gòu)建數(shù)據(jù)分析模型時,過擬合是一個常見的問題。假設(shè)一個模型在訓(xùn)練集上表現(xiàn)非常好,但在測試集上表現(xiàn)很差,這可能表明發(fā)生了什么?()A.模型過于簡單,無法捕捉數(shù)據(jù)中的復(fù)雜模式B.模型過于復(fù)雜,對訓(xùn)練數(shù)據(jù)過度擬合C.數(shù)據(jù)中存在噪聲,影響了模型的性能D.測試集的數(shù)據(jù)質(zhì)量有問題2、數(shù)據(jù)分析中的因果推斷旨在確定變量之間的因果關(guān)系,而非僅僅是相關(guān)性。假設(shè)你想研究廣告投入與產(chǎn)品銷售之間的關(guān)系,以下關(guān)于因果推斷方法的選擇,哪一項是最關(guān)鍵的?()A.進行隨機對照實驗,控制其他因素來確定因果關(guān)系B.基于觀察數(shù)據(jù),使用回歸分析來推斷因果關(guān)系C.僅僅依靠相關(guān)系數(shù)來判斷因果關(guān)系D.主觀猜測和經(jīng)驗判斷因果關(guān)系3、在處理大量數(shù)據(jù)時,為了提高數(shù)據(jù)處理效率,以下哪種數(shù)據(jù)結(jié)構(gòu)更適合快速查找和插入操作?()A.數(shù)組B.鏈表C.棧D.隊列4、在數(shù)據(jù)分析中,描述性統(tǒng)計是常用的方法之一。以下關(guān)于描述性統(tǒng)計指標(biāo)的說法中,錯誤的是?()A.均值是一組數(shù)據(jù)的平均值,能反映數(shù)據(jù)的集中趨勢B.中位數(shù)是將數(shù)據(jù)從小到大排序后位于中間位置的數(shù)值,不受極端值影響C.標(biāo)準(zhǔn)差反映了數(shù)據(jù)的離散程度,標(biāo)準(zhǔn)差越大,數(shù)據(jù)的波動越小D.描述性統(tǒng)計指標(biāo)可以幫助我們快速了解數(shù)據(jù)的基本特征和分布情況5、在數(shù)據(jù)倉庫中,星型模型和雪花模型是常見的數(shù)據(jù)模型。以下關(guān)于這兩種模型的比較,錯誤的是?()A.星型模型比雪花模型更易于理解B.雪花模型比星型模型更節(jié)省存儲空間C.星型模型的查詢效率通常高于雪花模型D.雪花模型比星型模型更適合復(fù)雜的業(yè)務(wù)需求6、假設(shè)要分析股票市場數(shù)據(jù)的波動性,以下關(guān)于波動性分析方法的描述,正確的是:()A.計算簡單移動平均就能準(zhǔn)確衡量股票價格的波動性B.標(biāo)準(zhǔn)差越大,說明股票價格的波動性越小C.歷史波動率對預(yù)測未來股票價格的波動沒有參考價值D.采用ARCH和GARCH模型可以更好地捕捉股票價格波動的聚類性和異方差性7、在數(shù)據(jù)分析中,決策樹是一種常用的分類算法。假設(shè)要根據(jù)客戶的特征預(yù)測他們是否會購買某種產(chǎn)品,以下關(guān)于決策樹的描述,哪一項是不準(zhǔn)確的?()A.決策樹通過對數(shù)據(jù)進行逐步分裂,構(gòu)建樹狀結(jié)構(gòu)來進行分類預(yù)測B.可以通過剪枝技術(shù)來防止決策樹過擬合,提高模型的泛化能力C.決策樹的生成過程完全是自動的,不需要人工干預(yù)和調(diào)整D.隨機森林是基于決策樹的集成學(xué)習(xí)算法,能夠提高預(yù)測的準(zhǔn)確性和穩(wěn)定性8、對于一個不平衡的數(shù)據(jù)集(某一類別的樣本數(shù)量遠(yuǎn)多于其他類別),以下哪種處理方法可能會提高模型性能?()A.過采樣B.欠采樣C.生成對抗網(wǎng)絡(luò)D.以上都是9、假設(shè)要分析不同年齡段消費者對某產(chǎn)品的滿意度,以下關(guān)于數(shù)據(jù)分組和分析的描述,正確的是:()A.分組越細(xì),對消費者滿意度的分析就越準(zhǔn)確B.不考慮樣本量的大小,隨意劃分年齡段進行分組C.對于每個年齡段,只計算滿意度的平均值就足夠了D.分析不同年齡段滿意度的差異時,需要進行假設(shè)檢驗10、在數(shù)據(jù)分析中,數(shù)據(jù)安全是一個重要的問題。以下關(guān)于數(shù)據(jù)安全的描述中,錯誤的是?()A.數(shù)據(jù)安全包括數(shù)據(jù)的保密性、完整性和可用性等方面B.數(shù)據(jù)安全問題可能會導(dǎo)致數(shù)據(jù)泄露、篡改和丟失等后果C.提高數(shù)據(jù)安全可以通過加密、備份和訪問控制等方法來實現(xiàn)D.數(shù)據(jù)安全只與數(shù)據(jù)的存儲和傳輸有關(guān),與數(shù)據(jù)分析的過程無關(guān)11、在數(shù)據(jù)分析的模型評估中,假設(shè)建立了一個預(yù)測模型,需要評估其性能。除了準(zhǔn)確率,以下哪個評估指標(biāo)對于衡量模型的泛化能力可能更重要?()A.召回率,衡量模型找到正例的能力B.F1值,綜合考慮準(zhǔn)確率和召回率C.均方誤差,用于連續(xù)值的預(yù)測D.不關(guān)注評估指標(biāo),認(rèn)為模型是完美的12、在數(shù)據(jù)預(yù)處理中,處理異常值是重要的環(huán)節(jié)。假設(shè)我們有一個包含員工工資的數(shù)據(jù)集,以下關(guān)于異常值處理的描述,正確的是:()A.直接刪除異常值,不進行任何進一步的分析B.異常值一定是錯誤的數(shù)據(jù),必須修正C.分析異常值產(chǎn)生的原因,根據(jù)具體情況決定處理方式D.異常值對數(shù)據(jù)分析沒有任何影響,無需關(guān)注13、在數(shù)據(jù)分析中,假設(shè)檢驗是常用的方法之一。在進行雙側(cè)檢驗時,如果P值小于0.05,我們可以得出什么結(jié)論?()A.拒絕原假設(shè)B.接受原假設(shè)C.無法得出結(jié)論D.原假設(shè)可能成立14、在進行回歸分析時,如果自變量之間存在高度的多重共線性,會對模型產(chǎn)生什么影響?()A.提高模型的準(zhǔn)確性B.使模型更易于解釋C.導(dǎo)致系數(shù)估計不準(zhǔn)確D.增加模型的穩(wěn)定性15、在數(shù)據(jù)分析的探索性數(shù)據(jù)分析(EDA)中,以下不屬于常用方法的是()A.繪制箱線圖B.進行假設(shè)檢驗C.計算數(shù)據(jù)的描述性統(tǒng)計量D.觀察數(shù)據(jù)的分布16、數(shù)據(jù)分析中的模型融合可以結(jié)合多個模型的優(yōu)勢提高性能。假設(shè)已經(jīng)建立了多個不同的預(yù)測模型,如線性回歸、決策樹和隨機森林,要將它們?nèi)诤弦垣@得更準(zhǔn)確的預(yù)測結(jié)果。以下哪種模型融合策略在這種情況下更有可能提高預(yù)測精度?()A.簡單平均融合B.加權(quán)平均融合C.基于投票的融合D.以上方法效果相同17、數(shù)據(jù)分析中的分類算法用于將數(shù)據(jù)分為不同的類別。假設(shè)要構(gòu)建一個分類模型來預(yù)測客戶是否會流失,以下哪種算法可能對處理不平衡的數(shù)據(jù)集(流失客戶數(shù)量遠(yuǎn)少于未流失客戶)表現(xiàn)較好?()A.邏輯回歸B.決策樹C.支持向量機D.隨機森林18、在數(shù)據(jù)分析的異常檢測中,假設(shè)要從大量的交易數(shù)據(jù)中找出異常的交易行為,例如高額、頻繁或不符合常規(guī)模式的交易。以下哪種異常檢測方法可能更能有效地發(fā)現(xiàn)這些異常?()A.基于統(tǒng)計的方法,設(shè)定閾值判斷異常B.基于距離的方法,計算數(shù)據(jù)點之間的距離C.基于密度的方法,根據(jù)數(shù)據(jù)的局部密度D.不進行異常檢測,認(rèn)為所有交易都是正常的19、在數(shù)據(jù)分析中,空間數(shù)據(jù)分析用于處理與地理位置相關(guān)的數(shù)據(jù)。假設(shè)要分析不同地區(qū)的犯罪率分布,以下關(guān)于空間數(shù)據(jù)分析的描述,哪一項是不正確的?()A.可以使用空間自相關(guān)分析來研究犯罪率在空間上的聚集或分散情況B.地理信息系統(tǒng)(GIS)為空間數(shù)據(jù)分析提供了強大的工具和平臺C.空間數(shù)據(jù)分析只適用于宏觀尺度的研究,如國家或省份層面,不適用于微觀尺度的分析D.考慮空間權(quán)重矩陣可以更準(zhǔn)確地捕捉空間關(guān)系對數(shù)據(jù)分析的影響20、對于一個具有多個特征的數(shù)據(jù)集合,若要進行特征工程,以下哪些操作可能會被執(zhí)行?()A.特征縮放B.特征選擇C.特征構(gòu)建D.以上都是二、簡答題(本大題共5個小題,共25分)1、(本題5分)在數(shù)據(jù)倉庫中,如何進行數(shù)據(jù)的一致性和完整性維護?請說明維護的策略和方法,并舉例說明。2、(本題5分)闡述數(shù)據(jù)挖掘中的圖像挖掘的主要任務(wù)和方法,如圖像分類、目標(biāo)檢測等,并舉例說明在醫(yī)療影像數(shù)據(jù)分析中的應(yīng)用。3、(本題5分)簡述數(shù)據(jù)分析師如何適應(yīng)不斷變化的數(shù)據(jù)分析技術(shù)和業(yè)務(wù)需求,包括學(xué)習(xí)新技能、更新知識體系等。4、(本題5分)解釋數(shù)據(jù)倉庫中的數(shù)據(jù)分區(qū)策略,說明其目的和常見的分區(qū)方式,如范圍分區(qū)、哈希分區(qū)等,并舉例說明。5、(本題5分)簡述數(shù)據(jù)分析師在面對復(fù)雜業(yè)務(wù)問題時,如何進行問題分解和逐步解決,包括使用的分析方法和工具。三、案例分析題(本大題共5個小題,共25分)1、(本題5分)一家汽車銷售公司擁有車輛銷售數(shù)據(jù),包括車型、價格、顏色、銷售地點、購買者年齡等。探究不同年齡層購買者對車型和顏色的選擇偏好以及價格敏感度。2、(本題5分)某網(wǎng)約車平臺收集了司機的接單習(xí)慣、服務(wù)評價、工作時間等。研究怎樣借助這些數(shù)據(jù)提高司機的服務(wù)質(zhì)量和工作效率。3、(本題5分)某在線教育平臺存有學(xué)生的學(xué)習(xí)記錄,包含課程選擇、學(xué)習(xí)時長、作業(yè)完成情況、考試成績等。剖析不同課程的學(xué)生學(xué)習(xí)時長與考試成績之間的關(guān)系,挖掘?qū)Τ煽冇绊戯@著的學(xué)習(xí)行為。4、(本題5分)某社交媒體平臺積累了用戶的話題參與度、群組活動數(shù)據(jù)、信息傳播路徑等。探討怎樣利用這些數(shù)據(jù)進行社區(qū)運營和內(nèi)容推薦優(yōu)化。5、(本題5分)某金融科技平臺收集了用戶的投資行為、風(fēng)險偏好、資產(chǎn)配置等。研究怎樣借助這些數(shù)據(jù)提供個性化的投資建議和財富管理服務(wù)。四、論述題(本大題共3個小題,共30分)1、(本題10分)在航空業(yè),航班調(diào)度、客戶滿意度和運營成本管理都需要數(shù)據(jù)分析的支持。以某航空公司為例,討論如何通過數(shù)據(jù)分析來優(yōu)化航班路線、提升客戶服務(wù)質(zhì)量、降低運營成本,以及如何處理航空數(shù)據(jù)的安全性和保密性要求。2、(本題10分)醫(yī)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論