2026屆陜西省商洛中學(xué)數(shù)學(xué)高二上期末質(zhì)量檢測試題含解析_第1頁
2026屆陜西省商洛中學(xué)數(shù)學(xué)高二上期末質(zhì)量檢測試題含解析_第2頁
2026屆陜西省商洛中學(xué)數(shù)學(xué)高二上期末質(zhì)量檢測試題含解析_第3頁
2026屆陜西省商洛中學(xué)數(shù)學(xué)高二上期末質(zhì)量檢測試題含解析_第4頁
2026屆陜西省商洛中學(xué)數(shù)學(xué)高二上期末質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2026屆陜西省商洛中學(xué)數(shù)學(xué)高二上期末質(zhì)量檢測試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.雙曲線的左、右焦點分別為、,P為雙曲線C的右支上一點.以O(shè)為圓心a為半徑的圓與相切于點M,且,則該雙曲線的漸近線為()A. B.C. D.2.若圓與圓相切,則實數(shù)a的值為()A.或0 B.0C. D.或3.已知p:,q:,那么p是q的()A.充要條件 B.必要不充分條件C.充分不必要條件 D.既不充分也不必要條件4.下列函數(shù)中,以為最小正周期,且在上單調(diào)遞減的為()A. B.C. D.5.已知雙曲線方程為,過點的直線與雙曲線只有一個公共點,則符合題意的直線的條數(shù)共有()A.4條 B.3條C.2條 D.1條6.用3,4,5,6,7,9這6個數(shù)組成沒有重復(fù)數(shù)字的六位數(shù),下列結(jié)論正確的有()A.在這樣的六位數(shù)中,奇數(shù)共有480個B.在這樣的六位數(shù)中,3、5、7、9相鄰的共有120個C.在這樣的六位數(shù)中,4,6不相鄰的共有504個D.在這樣六位數(shù)中,4個奇數(shù)從左到右按照從小到大排序的共有60個7.已知橢圓:,左、右焦點分別為,過的直線交橢圓于兩點,若的最大值為5,則的值是A.1 B.C. D.8.已知長方體中,,,則平面與平面所成的銳二面角的余弦值為()A. B.C. D.9.某地區(qū)高中分三類,A類學(xué)校共有學(xué)生2000人,B類學(xué)校共有學(xué)生3000人,C類學(xué)校共有學(xué)生4000人,若采取分層抽樣的方法抽取900人,則A類學(xué)校中的學(xué)生甲被抽到的概率()A. B.C. D.10.已知等差數(shù)列前項和為,且,,則此數(shù)列中絕對值最小的項為A.第5項 B.第6項C.第7項 D.第8項11.已知空間三點,,在一條直線上,則實數(shù)的值是()A.2 B.4C.-4 D.-212.阿基米德(Archimedes,公元前287年-公元前212年),出生于古希臘西西里島敘拉古(今意大利西西里島上),偉大的古希臘數(shù)學(xué)家、物理學(xué)家,與高斯、牛頓并稱為世界三大數(shù)學(xué)家.有一類三角形叫做阿基米德三角形(過拋物線的弦與過弦端點的兩切線所圍成的三角形),他利用“通近法”得到拋物線的弦與拋物線所圍成的封閉圖形的面積等于阿基米德三角形面積的(即右圖中陰影部分面積等于面積的).若拋物線方程為,且直線與拋物線圍成封閉圖形的面積為6,則()A.1 B.2C. D.3二、填空題:本題共4小題,每小題5分,共20分。13.在不等邊△ABC(三邊均不相等)中,三個內(nèi)角A,B,C所對的邊分別為a,b,c,且有,則角C的大小為________14.如圖的形狀出現(xiàn)在南宋數(shù)學(xué)家楊輝所著的《詳解九章算法·商功》中,后人稱為“三角垛”.“三角垛”的最上面一層有1個球,第二層有3個球,第三層有6個球…….設(shè)各層球數(shù)構(gòu)成一個數(shù)列,其中,,,則______15.在等差數(shù)列中,,那么等于______.16.古希臘著名數(shù)學(xué)家阿波羅尼斯與歐幾里得、阿基米德齊名.他發(fā)現(xiàn):“平面內(nèi)到兩個定點A、B的距離之比為定值(且)的點的軌跡是圓”.后來人們將這個圓以他的名字命名,稱為阿波羅尼斯圓,簡稱阿氏圓,在平面直角坐標(biāo)系中,,,點滿足,則點P的軌跡方程為__________.(答案寫成標(biāo)準(zhǔn)方程),的最小值為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知的展開式中,只有第6項的二項式系數(shù)最大(1)求n的值;(2)求展開式中含的項18.(12分)已知點是圓上任意一點,是圓內(nèi)一點,線段的垂直平分線與半徑相交于點(1)當(dāng)點在圓上運動時,求點的軌跡的方程;(2)設(shè)不經(jīng)過坐標(biāo)原點,且斜率為的直線與曲線相交于、兩點,記、的斜率分別是、,以、為直徑的圓的面積分別為、當(dāng)、都存在且不為時,試探究是否為定值?若是,求出此定值;若不是,請說明理由19.(12分)如圖,已知平面,四邊形為矩形,四邊形為直角梯形,,,,(1)求證:∥平面;(2)求證:平面平面20.(12分)已知數(shù)列的前n項和為,且.(1)求數(shù)列的通項公式;(2)若,設(shè),求數(shù)列的前n項和.21.(12分)已知直線:,直線:.(1)若,求與的距離;(2)若,求與的交點的坐標(biāo).22.(10分)等差數(shù)列的前項和為,數(shù)列是等比數(shù)列,滿足,,,.(1)求數(shù)列和的通項公式;(2)令,設(shè)數(shù)列的前項和為,求.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】連接、,利用中位線定理和雙曲線定義構(gòu)建參數(shù)關(guān)系,即求得漸近線方程.【詳解】如圖,連接、,∵M(jìn)是的中點,∴是的中位線,∴,且,根據(jù)雙曲線的定義,得,∴,∵與以原點為圓心a為半徑的圓相切,∴,可得,中,,即得,,解得,即,得.由此得雙曲線的漸近線方程為.故選:A.【點睛】本題考查了雙曲線的定義的應(yīng)用和漸近線的求法,屬于中檔題.2、D【解析】根據(jù)給定條件求出兩圓圓心距,再借助兩圓相切的充要條件列式計算作答.【詳解】圓的圓心,半徑,圓的圓心,半徑,而,即點不可能在圓內(nèi),則兩圓必外切,于是得,即,解得,所以實數(shù)a的值為或.故選:D3、C【解析】若p成立則q成立且若q成立不能得到p一定成立,p是q充分不必要條件.【詳解】因為>0,<1,所以若p:成立,一定成立,但q:成立,p:不一定成立,所以p是q的充分不必要條件.故選:C.4、B【解析】A.利用正切函數(shù)的性質(zhì)判斷;B.作出的圖象判斷;C.作出的圖象判斷;D.作出的圖象判斷.【詳解】A.是以為最小正周期,在上單調(diào)遞增,故錯誤;B.如圖所示:,由圖象知:函數(shù)是以為最小正周期,在上單調(diào)遞減,故正確;C.如圖所示:,由圖象知:是以為最小正周期,在上單調(diào)遞增,故錯誤;D.如圖所示:,由圖象知:是以為最小正周期,在上單調(diào)遞增,故錯誤;故選:B5、A【解析】利用雙曲線漸近線的性質(zhì),結(jié)合一元二次方程根的判別式進(jìn)行求解即可.【詳解】解:雙曲線的漸近線方程為,右頂點為.①直線與雙曲線只有一個公共點;②過點平行于漸近線時,直線與雙曲線只有一個公共點;③設(shè)過的切線方程為與雙曲線聯(lián)立,可得,由,即,解得,直線的條數(shù)為1.綜上可得,直線的條數(shù)為4.故選:A,.6、A【解析】A選項,特殊位置優(yōu)先考慮求出這樣的六位數(shù)中,奇數(shù)個數(shù);B選項,相鄰問題捆綁法求解;C選項,不相鄰問題插空法求解;D選項,定序問題使用倍縮法求解.【詳解】用3,4,5,6,7,9這6個數(shù)組成沒有重復(fù)數(shù)字的六位數(shù),個位為3,5,7,9中的一位,有種,其余五個數(shù)位上的數(shù)字進(jìn)行全排列,有種,綜上:在這樣的六位數(shù)中,奇數(shù)共有個,A正確;在這樣的六位數(shù)中,3、5、7、9相鄰,將3、5、7、9捆綁,有種排法,再與4,6進(jìn)行全排列,故共有個,B錯誤;在這樣的六位數(shù)中,4,6不相鄰,先將3、5、7、9進(jìn)行全排列,再從五個位置中任選兩個將4,6排列,綜上共有個,C錯誤;在這樣的六位數(shù)中,4個奇數(shù)從左到右按照從小到大排序的共有個,D錯誤.故選:A7、D【解析】由題意可知橢圓是焦點在x軸上的橢圓,利用橢圓定義得到|BF2|+|AF2|=8﹣|AB|,再由過橢圓焦點的弦中通徑的長最短,可知當(dāng)AB垂直于x軸時|AB|最小,把|AB|的最小值b2代入|BF2|+|AF2|=8﹣|AB|,由|BF2|+|AF2|的最大值等于5列式求b的值即可【詳解】由0<b<2可知,焦點在x軸上,∵過F1的直線l交橢圓于A,B兩點,則|BF2|+|AF2|+|BF1|+|AF1|=2a+2a=4a=8∴|BF2|+|AF2|=8﹣|AB|當(dāng)AB垂直x軸時|AB|最小,|BF2|+|AF2|值最大,此時|AB|=b2,則5=8﹣b2,解得b,故選D【點睛】本題考查直線與圓錐曲線的關(guān)系,考查了橢圓的定義,考查橢圓的通徑公式,考查計算能力,屬于中檔題8、A【解析】建立空間直角坐標(biāo)系,求得平面的一個法向量為,易知平面的一個法向量為,由求解.【詳解】建立如圖所示空間直角坐標(biāo)系:則,所以,設(shè)平面的一個法向量為,則,即,令,則,易知平面的一個法向量為,所以,所以平面與平面所成的銳二面角的余弦值為,故選:A9、D【解析】利用抽樣的性質(zhì)求解【詳解】所有學(xué)生數(shù)為,所以所求概率為.故選:D10、C【解析】設(shè)等差數(shù)列的首項為,公差為,,則,又,則,說明數(shù)列為遞減數(shù)列,前6項為正,第7項及后面的項為負(fù),又,則,則在數(shù)列中絕對值最小的項為,選C.11、C【解析】根據(jù)三點在一條直線上,利用向量共線原理,解出實數(shù)的值.【詳解】解:因為空間三點,,在一條直線上,所以,故.所以.故選:C.【點睛】本題主要考查向量共線原理,屬于基礎(chǔ)題.12、D【解析】根據(jù)題目所給條件可得阿基米德三角形的面積,再利用三角形面積公式即可求解.【詳解】由題意可知,當(dāng)過焦點的弦垂直于x軸時,即時,,即,故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由正弦定理可得,又,,,,,在三角形中,.考點:1正弦定理;2正弦的二倍角公式.14、15【解析】由分析可知每次小球數(shù)量剛好是等差數(shù)列的求和,最后直接公式即可算出答案.【詳解】由題意可知,,所以,故答案為:1515、14【解析】根據(jù)等差數(shù)列的性質(zhì)得到,求得,再由,即可求解.【詳解】因為數(shù)列為等差數(shù)列,且,根據(jù)等差數(shù)列的性質(zhì),可得,解答,又由.故答案為:14.16、①.②.【解析】設(shè)點P坐標(biāo),然后用直接法可求;根據(jù)軌跡方程和數(shù)量積的坐標(biāo)表示對化簡,結(jié)合軌跡方程可得x的范圍,然后可解.【詳解】設(shè)P點坐標(biāo)為,則由,得,化簡得,即.因為,所以因為點P在圓上,故所以,故的最小值為.故答案為:,三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)10;(2);【解析】(1)利用二項式系數(shù)的性質(zhì)即可求出的值;(2)求出展開式的通項公式,然后令的指數(shù)為即可求解【小問1詳解】∵的展開式中,只有第6項的二項式系數(shù)最大,∴展開后一共有11項,則,解得;【小問2詳解】二項式的展開式的通項公式為,令,解得,∴展開式中含的項為18、(1);(2)是定值,.【解析】(1)由條件可得點軌跡滿足橢圓定義,設(shè)出橢圓方程,由,的值可得的值,從而求得軌跡方程;(2)設(shè)出直線的方程,結(jié)合韋達(dá)定理,分別求得為定值,也為定值,從而可得是定值【小問1詳解】由題意知,,根據(jù)橢圓的定義知點的軌跡是以,為焦點的橢圓,設(shè)橢圓的方程為,則,,曲線的方程為;【小問2詳解】由題意知直線的方程為且m≠0),設(shè)直線與橢圓的交點為,,,,由得,,,,,,,,,,是定值,為.19、(1)證明見解析(2)證明見解析【解析】(1)根據(jù)線面平行的判定,證明即可;(2)過C作,垂足為M,根據(jù)勾股定理證明,再根據(jù)線面垂直的性質(zhì)與判定證明平面BCE即可【小問1詳解】證明:因為四邊形ABEF為矩形,所以,又平面BCE,平面BCE,所以平面BCE【小問2詳解】過C作,垂足為M,則四邊形ADCM為矩形因為,,所以,,,,所以,所以因為平面ABCD,,所以平面ABCD,所以又平面BCE,平面BCE,,所以平面BCE,又平面ACF,所以平面平面BCE20、(1)(2).【解析】(1)由數(shù)列的前n項和與通項公式之間的關(guān)系即可完成.(2)由錯位相減法即可解決此類“差比”數(shù)列的求和.【小問1詳解】由,得當(dāng)時,,上下兩式相減得,,又當(dāng)時,滿足上式,所以數(shù)列的通項公式;【小問2詳解】由(1)可知,所以,則,上下兩式相減得,所以.21、(1).(2).【解析】分析:(1)先根據(jù)求出k的值,再利用平行線間的距離公式求與的距離.(2)先根據(jù)求出k的值,再解方程組得與的交點的坐標(biāo).詳解:(1)若,則由,即,解得或.當(dāng)時,直線:,直線:,兩直線重合,不符合,故舍去;當(dāng)時,直線:,直線:,所以.(2)若,則由,得.所以兩直線方程為:,:,聯(lián)立方程組,解得,所以與的交點的坐標(biāo)為.點睛:(1)本題主要考查直線的位置關(guān)系和距離的計算,意在考查學(xué)生對這些知識的掌握水平和計算能力.(2)直線與直線平行,則且兩直線不重合.直線與直線垂直,則.22、(1),(2)【解析】

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論