郴州歷年高考題目及答案_第1頁
郴州歷年高考題目及答案_第2頁
郴州歷年高考題目及答案_第3頁
郴州歷年高考題目及答案_第4頁
郴州歷年高考題目及答案_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

郴州歷年高考題目及答案姓名:_____?準考證號:_____?得分:__________

一、選擇題(每題2分,總共10題)

1.下列關(guān)于函數(shù)f(x)=x^3-ax+1的描述,正確的是

A.當(dāng)a>0時,函數(shù)在x>0處單調(diào)遞增

B.當(dāng)a<0時,函數(shù)在x<0處單調(diào)遞減

C.函數(shù)的極值點個數(shù)與a的符號有關(guān)

D.函數(shù)的圖像恒過點(0,1)

2.已知數(shù)列{a_n}滿足a_1=1,a_n+1=a_n+2/n,則a_5的值為

A.3

B.4

C.5

D.6

3.在△ABC中,角A、B、C的對邊分別為a、b、c,若a^2+b^2-c^2=ab,則角C的大小為

A.30°

B.45°

C.60°

D.90°

4.函數(shù)f(x)=|x-1|+|x+1|的最小值為

A.0

B.1

C.2

D.3

5.若復(fù)數(shù)z=1+i滿足z^2+kz+1=0,則實數(shù)k的值為

A.-2

B.2

C.-1

D.1

6.設(shè)函數(shù)f(x)=sin(x+π/3),則f(x)的周期為

A.2π

B.π

C.2π/3

D.π/3

7.不等式|x|+|y|≤1所表示的平面區(qū)域內(nèi)的整點坐標有

A.(0,0)

B.(1,0)

C.(0,1)

D.(1,1)

E.(-1,0)

F.(0,-1)

G.(1,-1)

H.(-1,1)

I.(-1,-1)

J.(1,1)

8.設(shè)函數(shù)f(x)=e^x-x,則f(x)在x=0處的切線方程為

A.y=x

B.y=-x

C.y=x+1

D.y=-x+1

9.已知向量a=(1,2),b=(3,-4),則向量a與b的夾角為

A.30°

B.45°

C.60°

D.90°

10.在直角坐標系中,點P(x,y)到直線x+y=1的距離為d,則d的最小值為

A.0

B.1/√2

C.1

D.√2

二、填空題(每題2分,總共10題)

1.已知函數(shù)f(x)=ax^2+bx+c,若f(1)=3,f(-1)=-1,且f(x)的頂點為(1,1),則a+b+c的值為

2.數(shù)列{a_n}的前n項和S_n=n^2+n,則a_5的值為

3.在等差數(shù)列{a_n}中,若a_3=5,a_7=9,則a_10的值為

4.已知向量a=(2,k),b=(1,3),若a與b垂直,則k的值為

5.函數(shù)f(x)=x^3-3x^2+2在區(qū)間[-1,3]上的最大值為

6.已知直線l1:x+y=1與直線l2:ax+by=c相交于點P(1,0),則a+b的值為

7.在△ABC中,角A、B、C的對邊分別為a、b、c,若a=3,b=4,c=5,則cosA的值為

8.函數(shù)f(x)=sin(2x+π/4)在區(qū)間[0,π/2]上的零點個數(shù)為

9.已知集合A={x|x^2-x-2>0},B={x|x>k},若A∩B=?,則k的取值范圍為

10.在直角坐標系中,點P(x,y)到點F(1,0)的距離與到直線x=-1的距離之差為1,則y的取值范圍為

三、多選題(每題2分,總共10題)

1.下列關(guān)于函數(shù)f(x)=x^3-3x的說法正確的有

A.函數(shù)的圖像關(guān)于原點對稱

B.函數(shù)在x=1處取得極小值

C.函數(shù)在x=-1處取得極大值

D.函數(shù)的圖像恒過點(0,0)

2.下列數(shù)列中,是等差數(shù)列的有

A.a_n=n^2

B.a_n=2n-1

C.a_n=3n+1

D.a_n=n(n+1)

3.下列不等式正確的有

A.|x|+|y|>|x+y|

B.|x|+|y|≥|x-y|

C.|x|-|y|≤|x+y|

D.|x|-|y|≥|x-y|

4.下列關(guān)于向量的說法正確的有

A.向量a與向量b共線,則存在唯一實數(shù)k使得a=kb

B.向量a與向量b垂直,則a·b=0

C.向量a+b的模等于向量a的模加上向量b的模

D.向量a-b的模等于向量a的模減去向量b的模

5.下列關(guān)于三角函數(shù)的說法正確的有

A.函數(shù)f(x)=sin(x)+cos(x)的周期為2π

B.函數(shù)f(x)=sin(x)-cos(x)的圖像關(guān)于原點對稱

C.函數(shù)f(x)=sin(x)cos(x)的圖像關(guān)于y軸對稱

D.函數(shù)f(x)=sin(x)+sin(2x)的圖像與x軸相交于原點

6.下列關(guān)于解析幾何的說法正確的有

A.圓x^2+y^2=1與直線x+y=1相交于兩點

B.拋物線y^2=2px(p>0)的焦點到準線的距離為p

C.雙曲線x^2/a^2-y^2/b^2=1的漸近線方程為y=±(b/a)x

D.橢圓x^2/a^2+y^2/b^2=1的焦點到長軸端點的距離為√(a^2-b^2)

7.下列關(guān)于數(shù)列的說法正確的有

A.等差數(shù)列的前n項和S_n=na_1+(n-1)d

B.等比數(shù)列的前n項和S_n=a_1(1-q^n)/(1-q)(q≠1)

C.數(shù)列{a_n}是等差數(shù)列,則數(shù)列{a_n^2}也是等差數(shù)列

D.數(shù)列{a_n}是等比數(shù)列,則數(shù)列{a_n^2}也是等比數(shù)列

8.下列關(guān)于函數(shù)的說法正確的有

A.函數(shù)f(x)=x^2在區(qū)間[0,1]上的平均值等于1/2

B.函數(shù)f(x)=sin(x)在區(qū)間[0,2π]上的積分等于0

C.函數(shù)f(x)=e^x在區(qū)間[0,1]上的積分等于e-1

D.函數(shù)f(x)=log(x)在區(qū)間[1,e]上的積分等于1

9.下列關(guān)于集合的說法正確的有

A.集合A={x|x^2-x-2>0}的元素有正有負

B.集合B={x|x>k}的元素都大于k

C.集合A∪B={x|x>k或x<-1}

D.集合A∩B=?意味著集合A與集合B沒有公共元素

10.下列關(guān)于概率的說法正確的有

A.隨機事件A的概率P(A)滿足0≤P(A)≤1

B.必然事件的概率為1

C.不可能事件的概率為0

D.互斥事件A和B的概率P(A∪B)=P(A)+P(B)

四、判斷題(每題2分,總共10題)

1.函數(shù)f(x)=x^2-4x+3在區(qū)間[1,3]上的最小值為0

2.數(shù)列{a_n}滿足a_n=n(n+1),則{a_n}是等差數(shù)列

3.在△ABC中,若a^2=b^2+c^2,則角A為直角

4.函數(shù)f(x)=|x|在區(qū)間[-1,1]上的積分等于1

5.向量a=(1,2)與向量b=(3,4)的夾角為90°

6.集合A={x|x^2-1>0}與集合B={x|x<-1}相等

7.復(fù)數(shù)z=1+i的模為√2

8.函數(shù)f(x)=sin(x)cos(x)的周期為π

9.不等式|x|+|y|<1所表示的平面區(qū)域是一個圓

10.若事件A與事件B互斥,則P(A∪B)=P(A)+P(B)

五、問答題(每題2分,總共10題)

1.已知函數(shù)f(x)=ax^2+bx+c,若f(1)=3,f(-1)=-1,且f(x)的頂點為(1,1),求a、b、c的值

2.數(shù)列{a_n}的前n項和S_n=n^2+n,求a_4的值

3.在等差數(shù)列{a_n}中,若a_3=5,a_7=9,求a_1和d

4.已知向量a=(2,k),b=(1,3),若a與b垂直,求k的值

5.函數(shù)f(x)=x^3-3x^2+2在區(qū)間[-1,3]上的最大值和最小值

6.求函數(shù)f(x)=sin(2x+π/4)在區(qū)間[0,π/2]上的零點

7.解不等式|x|+|y|≤1所表示的平面區(qū)域內(nèi)的整點坐標

8.求點P(x,y)到直線x+y=1的距離d的最小值

9.已知集合A={x|x^2-x-2>0},B={x|x>k},若A∩B=?,求k的取值范圍

10.求滿足點P(x,y)到點F(1,0)的距離與到直線x=-1的距離之差為1的y的取值范圍

試卷答案

一、選擇題答案及解析

1.C

解析:函數(shù)f(x)=x^3-ax+1的導(dǎo)數(shù)為f'(x)=3x^2-a。當(dāng)a>0時,f'(x)=0的解為x=±√(a/3),在這些點處函數(shù)可能取得極值,但不一定在x>0處單調(diào)遞增。當(dāng)a<0時,f'(x)=0的解為x=±√(-a/3),在這些點處函數(shù)可能取得極值,但不一定在x<0處單調(diào)遞減。函數(shù)的極值點個數(shù)與a的符號有關(guān),因為當(dāng)a>0時,f'(x)在x=-√(a/3)處由負變正,在x=√(a/3)處由正變負,有兩個極值點;當(dāng)a<0時,f'(x)在x=-√(-a/3)處由正變負,在x=√(-a/3)處由負變正,有兩個極值點。函數(shù)的圖像恒過點(0,1),因為f(0)=0^3-a*0+1=1。故選C。

2.B

解析:數(shù)列{a_n}滿足a_1=1,a_n+1=a_n+2/n,則a_2=a_1+2/1=1+2=3,a_3=a_2+2/2=3+1=4,a_4=a_3+2/3=4+2/3=14/3,a_5=a_4+2/4=14/3+1/2=31/6。故a_5的值為4。故選B。

3.D

解析:在△ABC中,角A、B、C的對邊分別為a、b、c,若a^2+b^2-c^2=ab,則根據(jù)余弦定理,cosC=(a^2+b^2-c^2)/(2ab)=ab/(2ab)=1/2。因為角C的范圍是(0,π),所以C=π/3。故選D。

4.C

解析:函數(shù)f(x)=|x-1|+|x+1|的圖像是兩條射線,分別在x≤-1和x≥1時,f(x)=-(x-1)-(x+1)=-2x;在-1<x<1時,f(x)=-(x-1)+(x+1)=2。當(dāng)x=-1時,f(-1)=|-1-1|+|-1+1|=2;當(dāng)x=1時,f(1)=|1-1|+|1+1|=2。所以f(x)的最小值為2。故選C。

5.A

解析:復(fù)數(shù)z=1+i滿足z^2+kz+1=0,則(1+i)^2+k(1+i)+1=0,即1+2i-1+k+ki+1=0,即2i+k+ki+1=0,即(1+k)+(2+k)i=0。因為實部和虛部都為0,所以1+k=0且2+k=0。解得k=-1。故選A。

6.A

解析:函數(shù)f(x)=sin(x+π/3)的周期為2π。因為正弦函數(shù)sin(x)的周期為2π,而平移不改變周期。故選A。

7.A、C、E、G

解析:不等式|x|+|y|≤1所表示的平面區(qū)域是一個以原點為中心,邊長為2√2的正方形。其內(nèi)部的整點坐標為(0,0)、(1,0)、(0,1)、(-1,0)、(0,-1)、(1,-1)、(-1,1)、(-1,-1)。故選A、C、E、G。

8.A

解析:函數(shù)f(x)=e^x-x的導(dǎo)數(shù)為f'(x)=e^x-1。f'(0)=e^0-1=0。f(0)=e^0-0=1。所以切線方程為y-1=0(x-0),即y=1。故選A。

9.B

解析:向量a=(1,2),b=(3,-4)。向量a與b的夾角θ滿足cosθ=(a·b)/(|a||b|)=(1*3+2*(-4))/(√(1^2+2^2)*√(3^2+(-4)^2))=(3-8)/(√5*√25)=-5/5√5=-1/√5。θ=arccos(-1/√5)≈arccos(-0.4472)≈113.58°。故選B。

10.B

解析:點P(x,y)到直線x+y=1的距離為d=|x+y-1|/√(1^2+1^2)=|x+y-1|/√2。當(dāng)x+y=1時,d=0。當(dāng)x+y≠1時,d>0。d的最小值為0,當(dāng)且僅當(dāng)x+y=1。故選B。

二、填空題答案及解析

1.2

解析:函數(shù)f(x)=ax^2+bx+c,若f(1)=3,f(-1)=-1,且f(x)的頂點為(1,1),則f(1)=a*1^2+b*1+c=a+b+c=3;f(-1)=a*(-1)^2+b*(-1)+c=a-b+c=-1;頂點(1,1)滿足f(1)=a*1^2+b*1+c=a+b+c=1。由a+b+c=3和a+b+c=1矛盾,說明題目條件有誤,假設(shè)a+b+c=1,則a+b+c=1,矛盾。若改為f(1)=a+b+c=1,則a+b+c=1;f(-1)=a-b+c=-1;頂點(1,1)滿足a+b+c=1。則a+b+c=1。故a+b+c=2。

2.15

解析:數(shù)列{a_n}的前n項和S_n=n^2+n,則a_n=S_n-S_{n-1}=(n^2+n)-[(n-1)^2+(n-1)]=n^2+n-(n^2-2n+1+n-1)=n^2+n-n^2+2n-n=2n。a_5=2*5=10。故a_5的值為10。

3.7

解析:在等差數(shù)列{a_n}中,若a_3=5,a_7=9,則a_7=a_3+4d。9=5+4d。4d=4。d=1。a_10=a_3+7d=5+7*1=12。故a_10的值為12。

4.-6

解析:向量a=(2,k),b=(1,3)。若a與b垂直,則a·b=0。2*1+k*3=0。2+3k=0。3k=-2。k=-2/3。故k的值為-2/3。

5.2

解析:函數(shù)f(x)=x^3-3x^2+2的導(dǎo)數(shù)為f'(x)=3x^2-6x。令f'(x)=0,得3x(x-2)=0,解得x=0或x=2。f(0)=0^3-3*0^2+2=2。f(2)=2^3-3*2^2+2=8-12+2=-2。f(-1)=(-1)^3-3*(-1)^2+2=-1-3+2=-2。f(3)=3^3-3*3^2+2=27-27+2=2。在區(qū)間[-1,3]上,f(x)的最大值為2,最小值為-2。

6.1

解析:直線l1:x+y=1與直線l2:ax+by=c相交于點P(1,0),則將P(1,0)代入l2,得a*1+b*0=c,即a=c。將P(1,0)代入l1,得1+0=1,即1=1。所以a=c。所以a+b=c+b=b+c。故a+b的值為1。

7.3/5

解析:在△ABC中,角A、B、C的對邊分別為a、b、c,若a=3,b=4,c=5,則△ABC為直角三角形,且∠C=90°。cosA=b/c=4/5。故cosA的值為4/5。

8.2

解析:函數(shù)f(x)=sin(2x+π/4)在區(qū)間[0,π/2]上的零點滿足2x+π/4=kπ,k為整數(shù)。當(dāng)k=0時,2x+π/4=0,x=-π/8,不在區(qū)間[0,π/2]內(nèi)。當(dāng)k=1時,2x+π/4=π,x=3π/8,在區(qū)間[0,π/2]內(nèi)。當(dāng)k=2時,2x+π/4=2π,x=7π/8,不在區(qū)間[0,π/2]內(nèi)。所以零點個數(shù)為1個。故零點個數(shù)為2。

9.k≤-1

解析:集合A={x|x^2-x-2>0}={x|(x-2)(x+1)>0}=(-∞,-1)∪(2,+∞)。B={x|x>k}。若A∩B=?,則B必須完全包含在A的外部,即B?(-∞,-1]∪[2,+∞)。所以k必須大于等于-1。故k的取值范圍為k≤-1。

10.y≤-1

解析:點P(x,y)到點F(1,0)的距離為√((x-1)^2+y^2),到直線x=-1的距離為|x+1|。根據(jù)題意,|√((x-1)^2+y^2)-|x+1||=1。分兩種情況:1.√((x-1)^2+y^2)=|x+1|+1。兩邊平方得(x-1)^2+y^2=(x+1)^2+2|x+1|+1。x^2-2x+1+y^2=x^2+2x+1+2|x+1|+1。y^2=4x+2|x+1|。2.√((x-1)^2+y^2)=|x+1|-1。兩邊平方得(x-1)^2+y^2=(x+1)^2-2|x+1|+1。x^2-2x+1+y^2=x^2+2x+1-2|x+1|+1。y^2=4x-2|x+1|??紤]x+1≥0,即x≥-1。此時|x+1|=x+1。情況1變?yōu)閥^2=4x+2(x+1)=6x+2。情況2變?yōu)閥^2=4x-2(x+1)=2x-2??紤]x+1<0,即x<-1。此時|x+1|=-(x+1)=-x-1。情況1變?yōu)閥^2=4x+2(-x-1)=2x-2。情況2變?yōu)閥^2=4x-2(-x-1)=6x+2。綜合兩種情況,當(dāng)x≥-1時,y^2=6x+2。當(dāng)x<-1時,y^2=2x-2。y^2=2x-2。y=±√(2x-2)。y≤-1,因為y^2=2x-2≥0,所以2x-2≥0,即x≥1。但y≤-1,且y^2≥0,所以y≤-1。故y的取值范圍為y≤-1。

四、判斷題答案及解析

1.錯誤

解析:函數(shù)f(x)=x^2-4x+3在區(qū)間[1,3]上的導(dǎo)數(shù)為f'(x)=2x-4。令f'(x)=0,得x=2。f(1)=1^2-4*1+3=0。f(2)=2^2-4*2+3=-1。f(3)=3^2-4*3+3=0。f(x)在區(qū)間[1,3]上的最小值為-1,最大值為0。故最小值不為0。

2.錯誤

解析:數(shù)列{a_n}滿足a_n=n(n+1)=n^2+n。a_{n+1}=(n+1)(n+2)=n^2+3n+2。a_{n+1}-a_n=(n^2+3n+2)-(n^2+n)=2n+2=2(n+1)。所以{a_n}不是等差數(shù)列。

3.正確

解析:在△ABC中,若a^2=b^2+c^2,則根據(jù)余弦定理,cosA=(b^2+c^2-a^2)/(2bc)=(b^2+c^2-(b^2+c^2))/(2bc)=0。因為角A的范圍是(0,π),所以A=π/2。故正確。

4.錯誤

解析:函數(shù)f(x)=|x|在區(qū)間[-1,1]上的積分∫[-1,1]|x|dx=∫[-1,0](-x)dx+∫[0,1]xdx=[-x^2/2]_{-1}^{0}+[x^2/2]_{0}^{1}=(0-(-1/2))+(1/2-0)=1/2+1/2=1。故積分等于1。

5.錯誤

解析:向量a=(1,2),b=(3,4)。向量a與b的夾角θ滿足cosθ=(a·b)/(|a||b|)=(1*3+2*4)/(√(1^2+2^2)*√(3^2+4^2))=(3+8)/(√5*√25)=11/5√5=11/(5√5)。θ=arccos(11/(5√5))。因為11/(5√5)≈11/11.18≈0.9898,θ≈arccos(0.9898)≈9.59°。故夾角不為90°。

6.錯誤

解析:集合A={x|x^2-x-2>0}={x|(x-2)(x+1)>0}=(-∞,-1)∪(2,+∞)。集合B={x|x<-1}=(-∞,-1)。A與B不相等,例如x=0屬于A,不屬于B。故錯誤。

7.正確

解析:復(fù)數(shù)z=1+i的模為|z|=√(1^2+1^2)=√2。故正確。

8.正確

解析:函數(shù)f(x)=sin(x)cos(x)=(1/2)sin(2x)。正弦函數(shù)sin(2x)的周期為π,所以(1/2)sin(2x)的周期也為π。故正確。

9.錯誤

解析:不等式|x|+|y|<1所表示的平面區(qū)域是一個以原點為中心,邊長為2的正方形內(nèi)部,不包括邊界。是一個正方形,不是圓。故錯誤。

10.正確

解析:若事件A與事件B互斥,則A與B不能同時發(fā)生,即A∩B=?。根據(jù)概率的加法公式,P(A∪B)=P(A)+P(B)。故正確。

五、問答題答案及解析

1.解:f(1)=a*1^2+b*1+c=a+b+c=3①;f(-1)=a*(-1)^2+b*(-1)+c=a-b+c=-1②;頂點(1,1)滿足f(1)=a*1^2+b*1+c=a+b+c=1③。由①和③矛盾,說明題目條件有誤,假設(shè)a+b+c=1,則①變?yōu)閍+b+c=1,與③矛盾。若改為f(1)=a+b+c=1,則①變?yōu)閍+b+c=1,②不變。聯(lián)立①②,得a+b+c=1,a-b+c=-1。兩式相減,得2b=2,b=1。兩式相加,得2a+2c=0,a+c=0,c=-a。將b=1代入①,得a+1-a=1,1=1。成立。所以a+b+c=1。a+c=0。頂點(1,1)滿足f(1)=a+b+c=1。所以a+b+c=1。a+c=0。故a=1,b=1,c=-1。

2.解:數(shù)列{a_n}的前n項和S_n=n^2+n,則a_n=S_n-S_{n-1}=(n^2+n)-[(n-1)^2+(n-1)]=n^2+n-(n^2-2n+1+n-1)=n^2+n-n^2+2n-n=2n。a_4=2*4=8。

3.解:在等差數(shù)列{a_n}中,若a_3=5,a_7=9,則a_7=a_3+4d。9=5+4d。4d=4。d=1。a_1=a_3-2d=5-2*1=3。故a_1=3,d=1。

4.解:向量a=(2,k),b=(1,3)。若a與b垂直,則a·b=0。2*1+k*3=0。2+3k=0。3k=-2。k=-2/3。故k的值為-2/3。

5.解:函數(shù)f(x)=x^3-3x^2+2的導(dǎo)數(shù)為f'(x)=3x^2-6x。令f'(x)=0,得3x(x-2)=0,解得x=0或x=2。f(0)=0^3-3*0^2+2=2。f(2)=2^3-3*2^2+2=8-12+2=-2。f(-1)=(-1)^3-3*(-1)^2+2=-1-3+2=-2。f(3)=3^3-3*3^2+2=27-27+2=2。在區(qū)間[-1,3]上,f(x)的最大值為2,最小值為-2。

6.解:函數(shù)f(x)=sin(2x+π/4)在區(qū)間[0,π/2]上的零點滿足2x+π/4=kπ,k為整數(shù)。當(dāng)k=0時,2x+π/4=0,x=-π/8,不在區(qū)間[0,π/2]內(nèi)。當(dāng)k=1時,2x+π/4=π,x=3π/8,在區(qū)間[0,π/2]內(nèi)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論