19.2.2一次函數(shù).ppt.ppt_第1頁
19.2.2一次函數(shù).ppt.ppt_第2頁
19.2.2一次函數(shù).ppt.ppt_第3頁
19.2.2一次函數(shù).ppt.ppt_第4頁
19.2.2一次函數(shù).ppt.ppt_第5頁
已閱讀5頁,還剩34頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、一次函數(shù),k0,k0,一、三象限,二、四象限,y隨x的增大而減小,y隨x的增大而增大,圖像必經(jīng)過(0,0)和(1,k)這兩個點,一般地,形如y=kx(k是常數(shù),k0)的函數(shù),叫做正比例函數(shù),其中k叫做比例系數(shù),復(fù)習(xí):,問題與探究,某登山隊大本營所在地的氣溫為5,海拔每升高1km氣溫下降6 ,登山隊員由大本營向上登高xkm時,他們所在位置的氣溫是y (1)試用解析式表示y與x的關(guān)系,解:y與x的函數(shù)關(guān)系式為 y=5-6x,這個函數(shù)關(guān)系式也可以寫為 y=-6x+5,(2)當(dāng)?shù)巧疥爢T由大本營向上登高0.5km時他們所在位置的氣溫是多少?,解:當(dāng)x=0.5時,y=-60.5+5=2,討論與思考,下列問

2、題中的變量對應(yīng)關(guān)系可用怎樣的函數(shù)表示?,(1)有人發(fā)現(xiàn),在20-25 的蟋蟀每分鐘名叫次數(shù)c與溫度t(單位: )有關(guān)即c的值約是t的七倍與35的差;,解: c=7t-35,(2)一種計算成年人標準體重G(單位:千克)的方法是,以厘米為單位量出身高值h減常數(shù)105,所得差是G的值;,解:G=h-105,(3)某城市的市內(nèi)電話的月收費額y(單位:元)包括:月租費22元,撥打電話x分鐘的計時費按0.01元/分鐘收??;,解:y=0.01x+22,(4)把一個長10cm、寬5cm的長方形的長減少xcm,寬不變,長方形的面積y(單位:cm2)隨x的值而變化,解:y=-5x+50,觀察與發(fā)現(xiàn),認真觀察以上出

3、現(xiàn)的四個函數(shù)解析式,分別說出哪些是常數(shù)、自變量和函數(shù),這些函數(shù)有什么共同點?,這些函數(shù)都是常數(shù)和自變量的乘積與另一個常數(shù)的和的形式!,7,-35,t,c,1,-105,h,G,0.01,22,x,y,-5,50,x,y,這些函數(shù)有什么共同點?,這些函數(shù)都是常數(shù)和自變量的乘積與一個常數(shù)的和的形式!,這些函數(shù)有什么共同點?,這些函數(shù)都是常數(shù)與自變量的乘積的形式!,正比例函數(shù),一次函數(shù),歸納與總結(jié),一般地,形如y=kx+b(k,b是常數(shù),k0)的函數(shù),叫做一次函數(shù)當(dāng)b=0時, y=kx+b即y=kx,所以說正比例函數(shù)是一種特殊的一次函數(shù),做一做:判斷下列函數(shù)是否是一次函數(shù)?如果是,k、b分別是多少,

4、y=2x,y=-0.5x+1,y=2x2+1,這里為什么強調(diào)k、b是常數(shù), k0呢?,你能舉出一些一次函數(shù)的例子嗎?,2.若y=(m-1)xm-1+3為一次函數(shù),則m= , 該函數(shù)表達式為 。,1.若y=(m-3)xn-1為一次函數(shù),則m , n 。,練習(xí):,補充練習(xí):,3.一個小球由靜止開始在一個斜坡 向下滾動,其速度每秒增加2米. (1)求小球速度v隨時間t變化的 函數(shù)關(guān)系式,它是一次函數(shù)嗎? (2)求第2.5秒時小球的速度.,4.汽車油箱中原有油50升,如果行駛中每小時用油5升,求油箱 中的油量y(單位:升)隨行駛時間x(單位:時)變化的函數(shù) 關(guān)系式,并寫出自變量x的取值范圍 y是x的一

5、次函數(shù)嗎?,例1 已知y與x3成正比例,當(dāng)x4時,y3 (1)寫出y與x之間的函數(shù)關(guān)系式; (2)y與x之間是什么函數(shù)關(guān)系; (3)求x2.5時,y的值,y3x9,(2) y是x的一次函數(shù),y32.5 - 9 -1.5,解: (1) 設(shè) yk(x3),把 x4,y3 代入上式,得 3 k(43),解得 k3,(3) 當(dāng)x2.5時,一般地,形如y=kx+b(k,b是常數(shù),k0)的函數(shù),叫做一次函數(shù)當(dāng)b=0時, y=kx+b即y=kx,所以說正比例函數(shù)是一種特殊的一次函數(shù),所有的正比例函數(shù)都是一次函數(shù),所有的一次函數(shù)都是正比例函數(shù),判斷題:,下面我們將通過畫一次函數(shù)的圖象來 探索一次函數(shù)的性質(zhì),例

6、1.畫出函數(shù)y=-2x與y=-2x+3的圖象:,1.列表:,2.描點:,3.連線:,y=-2x,y=-2x+3,y=-2x+3,函數(shù)y=-2x+3圖像比函數(shù)y=-2x圖像向正上方高出3個單位,函數(shù)y=-2x+3圖像和函數(shù)y=-2x圖像平行,函數(shù)y=kx+b圖象是函數(shù)y=kx圖象向正上(下)方平移|b|個單位,函數(shù)y=kx+b圖象和函數(shù)y=kx圖象平行,一次函數(shù)y=kx+b (k,b是常數(shù),k0)圖象是一條直線,例2.畫出函數(shù)y=3x+2與y=-3x+2的圖象:,1.列表:,2.描點:,3.連線:,y=3x+2,y=-3x+2,b,k+b,一次函數(shù)y=kx+b(k,b是常數(shù),k0)的圖像經(jīng)過(0

7、,b)和(1,k+b)這兩個點,一次函數(shù)y=3x+2的圖象從左向右上升,y隨x的增大而增大;一次函數(shù)y=-3x+2的圖象從左向右下降,y隨x的增大而減小,一次函數(shù)y=kx+b(k0)的圖象從左向右上升,y隨x的增大而增大; 一次函數(shù)y=kx+b(k0)的圖象從左向右下降,y隨x的增大而減小,例3.畫函數(shù)y=2x+3與y=2x-3的圖象:,1.列表:,2.描點:,3.連線:,y=2x-3,y=2x+3,畫函數(shù)y=-x+2與y=-x-2的圖象:,y=-x+2,y=-x-2,一次函數(shù)y=kx+b(b0)的圖象在原點上方; 一次函數(shù)y=kx+b(b0)的圖象在原點下方; 一次函數(shù)y=kx+b(b=0)

8、的圖象經(jīng)過原點,正比例函數(shù),正比例函數(shù),一次函數(shù)y=kx+b(k、b是常數(shù),k0) 的圖像和性質(zhì),k的正負性,k0,k0,b取正、負、0,性質(zhì),畫圖常用 的兩個點,b0,b0,b=0,b0,b=0,b0,示意圖,圖像經(jīng)過的象限,一、二、三 象限,一、三 象限,一、三、四 象限,一、二、四 象限,二、四 象限,二、三、四 象限,y隨x的增大而減小,y隨x的增大而增大,(0,0) (1,k),(0,b) (1,k+b),(0,b) (1,k+b),(0,b) (1,k+b),(0,b) (1,k+b),(0,0) (1,k),基礎(chǔ)知識,正比 例函 數(shù),一次函數(shù),y=kx+b (k0),當(dāng)b=0時,

9、一次函數(shù)變?yōu)檎壤瘮?shù)。也就是說;正比例函數(shù)是一次函數(shù)的特殊情況,(0,0) (1,k),(- ,0) (0,b),k0,一.三,二.四,一.二.三,一.三.四,一.二.四,二.三.四,當(dāng)k0, Y隨x的增大而增大. 當(dāng)k0, Y隨x的增大而減小.,y=kx (k0),k0,k0 b0,k0 b0,k0,k0 b0,練習(xí):,1.判斷下列各圖中的函數(shù)k、b的符號.,k 0,b 0,k 0,b 0,k 0,b 0,0,0,根據(jù)圖象確定k,b的取值,K 0 b 0,K 0 b 0,K 0 b 0,K 0 b 0,K 0 b 0,K 0 b 0,K b, , , , , , ,2.一次函數(shù)y=kx+b

10、中,kb0,且y隨x的增大而減小,則它的圖象大致為( ),D,C,B,A,3.若一次函數(shù)y=kx+b的圖象經(jīng)過第一、三、四象限, 則 k、b應(yīng)滿足( ),A.k0,b0,B.k0,b0,C.k0,D.k0,b0,B,4.若一次函數(shù)y=kx+b的圖象經(jīng)過第一、二、四象限, 則 k、b應(yīng)滿足( ),5.若一次函數(shù)y=kx+b的圖象經(jīng)過第二、三、四象限, 則 k、b應(yīng)滿足( ),6.若一次函數(shù)y=kx+b的圖象經(jīng)過第二、四象限, 則 k、b應(yīng)滿足 。,選項參照上題,選項參照上題,7、將直線向下平移個單位,得到直線。,8、下列一次函數(shù)中,隨著的增大而減小的是(),y=3x-2,9.已知直線y=kx+b

11、平行于直線y=0.5x, 且過點(0,3),則函數(shù)的解析式 為 。,10 下面是y=k1x+k2與y=k2x在同一直角坐標系中的大致圖象,其中正確的是 ( ),A,B,C,D,B,11 直線l1:y=ax+b和L2:y=bx+a在同一直角坐標系中, 圖象大致是 ( ),A,練習(xí) 1 一次函數(shù)y=x-2的圖象不經(jīng)過的象限為() (A) 一 (B) 二 (C) 三 (D) 四 2 不經(jīng)過第二象限的直線是() (A) y=-2x (B) y=2x-1 (C) y=2x+1 (D) y=-2x+1 3 若直線 y=kx+b經(jīng)過一二四象限,那么直線 y=bx+k經(jīng)過象限 4 直線 y=kx-k的圖象的大

12、致位置是(),A,B,C,D,B,B,二三四,C,練習(xí):已知一次函數(shù)y=(m+5)x+(2-n) 求(1)m為何值時,y隨x的增大而減少? (2)m、n為何值時,函數(shù)圖象與y軸的交點在x軸上方? (3)m、n為何值時,函數(shù)圖象過原點? (4)m、n為何值時,函數(shù)圖象經(jīng)過二、三、四象限? (5)若點(2,1),(3,-5)在該函數(shù)圖象上,求m,n的值,函數(shù)解析式,圖象,一次,2個點,圖象,函數(shù)解析式,(一次函數(shù)圖象),(一次函數(shù)圖象解析式 y=kx+b),問題1:,問題2:,已知一個正比例函數(shù)的圖象經(jīng)過點(3,4), 則這個正比例函數(shù)的解析式是 。,y=kx,已知一個一次函數(shù)的圖像經(jīng)過點(3,4

13、), 則這個一次函數(shù)的解析式是 。,y=kx+b,已知一個一次函數(shù)的圖象經(jīng)過點(3,4),(1,2), 則這個一次函數(shù)的解析式是 。,這種方法叫做待定系數(shù)法,就是把解析式 中的系數(shù)確定了就可以求出函數(shù)的解析式了。,1.已知一個一次函數(shù)的圖象經(jīng)過點(0,-4),(1,0), 則這個一次函數(shù)的解析式是 。,練習(xí):,2.已知一次函數(shù)y=kx+b的圖象經(jīng)過點(-2, 3),(1,-1), 則這個一次函數(shù)的解析式是 。,-1,3.看圖填空: (1)當(dāng)Y=0時,X=_ (2)直線對應(yīng)的函數(shù)表達式是_ 議一議 一元一次方程0.5X+1=0與一次函數(shù)Y=0.5X+1有什么聯(lián)系?_ _,-2,y=1/2x+1,

14、函數(shù)Y=0.5X+1與X軸交點的橫坐標即為方程0.5X+1=0的解,4、一次函數(shù)y=kx+b的圖象如圖,則k、b的值分別為( ) (A)k=- ,b=1 (B)k=-2,b=1 (C)k= ,b=1 (D)k=2,b=1,x,y,o,1,1,B,練一練:,5已知一次函數(shù)的圖象如圖1所示:求其解析式。 6已知一次函數(shù)的圖象如圖2所示:求其解析式。,練一練:,7已知一次函數(shù)y=kx+2,當(dāng)x=5時y的值為4,求k的值。 8已知直線y=kx+b經(jīng)過點(9,0)和點(24,20),求k,b的值。,9.直線y=kx+b經(jīng)過點A(-2,6),且平行于直線y=-x (1)求這條直線的解析式; (2)若點B(

15、m,-3)在這條直線上,求m的值; (3)若O為坐標原點,求三角形AOB的面積。,1.小芳以200米/分的速度起跑后,先勻加速跑5分,每分提高 速度20米/分,又勻速跑10分。試寫出這段時間里她的跑步速 度y(單位:米/分)隨跑步時間x(單位:分)變化的函數(shù)關(guān) 系式,并畫出函數(shù)圖象。,解:(1)跑步速度y與跑步時間x的函數(shù)關(guān)系式為,(2)畫函數(shù)y=20 x+200(0 x5)圖象,列表:,描點:,連線:,畫函數(shù)y=300(5x15)圖象,2.為了加強公民的節(jié)水意識,某城市規(guī)定用水收費標準如下:每戶每月用水量不超過6米3時,水費按0.6元/米3收費,超過6米3時,超過部分每米3按1元收費,每戶每月用水量為x米3,應(yīng)繳水費y元。 (1)寫出每月用水量不超過6米3和超過6米3時,y與x之間的函數(shù)關(guān)系式,并判斷它們是否是一次函數(shù)。 (2)已知某戶5月份用水量為8米3,求該用戶5月份的水費。,練習(xí):,3.A城有肥料200噸,B城有肥料300噸,現(xiàn)要把這些肥料全部運往C、D兩鄉(xiāng)。從A城往C、D兩鄉(xiāng)運肥料的費用分別為每噸20元和25元;從B城往C、D兩鄉(xiāng)運肥料的費用分別為每噸15元和24元,現(xiàn)C鄉(xiāng)需要肥料240噸, D鄉(xiāng)需要肥料260噸,怎樣調(diào)運總運費最少?,解:設(shè)總運費為y元,A城運往C鄉(xiāng)的肥料量 為x噸,那么A城

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論