版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、Non-degenerate Perturbation Theory,Problem :,cant solve exactly.,Copyright Michael D. Fayer, 2007,Solutions of,complete, orthonormal set of states,with eigenvaluesand,Kronecker delta,Copyright Michael D. Fayer, 2007,Expand wavefunction,and,Copyright Michael D. Fayer, 2007,also have,Sum of infinite n
2、umber of terms for all powers of l equals 0.,Coefficients of the individual powers of l must equal 0.,Copyright Michael D. Fayer, 2007,First order correction,Want to find and .,Expand,Then,After substitution,Copyright Michael D. Fayer, 2007,After substitution,Left multiply by,Copyright Michael D. Fa
3、yer, 2007,We have,Then,Copyright Michael D. Fayer, 2007,First order correction to the wavefunction,Again using the equation obtained after substituting series expansions,Left multiply by,Equals zero unless i = j.,Coefficients in expansion of ket in terms of the zeroth order kets.,Copyright Michael D
4、. Fayer, 2007,is the bracket of with and .,Copyright Michael D. Fayer, 2007,First order corrections,Copyright Michael D. Fayer, 2007,Second Order Corrections,Using l2 coefficient,Expanding,Substituting and following same type of procedures yields,l2 coefficients have been absorbed.,Second order corr
5、ection dueto first order piece of H.,Second order correction due to anadditional second order piece of H.,Copyright Michael D. Fayer, 2007,Energy and Ket Corrected to First and Second Order,Copyright Michael D. Fayer, 2007,Example: x3 and x4 perturbation of the Harmonic Oscillator,Vibrational potent
6、ial of molecules not harmonic.Approximately harmonic near potential minimum.Expand potential in power series.,First additional terms in potential after x2 term are x3 and x4.,Copyright Michael D. Fayer, 2007,perturbationc and q are expansion coefficients like l.,Copyright Michael D. Fayer, 2007,In D
7、irac representation,First consider cubic term.,Copyright Michael D. Fayer, 2007,has terms with same number of raising and lowering operators.,Therefore,Copyright Michael D. Fayer, 2007,Sum of the six terms,Therefore,With,Copyright Michael D. Fayer, 2007,Perturbation Theory for Degenerate States,and,
8、normalize and orthogonal,and,Degenerate, same eigenvalue, E.,Any superposition of degenerate eigenstates is also an eigenstatewith the same eigenvalue.,Copyright Michael D. Fayer, 2007,n linearly independent states with same eigenvaluesystem n-fold degenerate,Can form an infinite number of sets of .
9、Nothing unique about any one set of n degenerate eigenkets.,Can form n orthonormal,Copyright Michael D. Fayer, 2007,Want approximate solution to,zeroth order Hamiltonian,perturbation,zeroth ordereigenket,zeroth order energy,Copyright Michael D. Fayer, 2007,Here is the difficulty,perturbed ket,zeroth
10、 order ket having eigenvalue,Copyright Michael D. Fayer, 2007,To solve problem,Expand E and,Some superposition, but we dont know the cj.Dont know correct zeroth order function.,Copyright Michael D. Fayer, 2007,To solve,substitute,Copyright Michael D. Fayer, 2007,this piece becomes,Left multiplying b
11、y,Copyright Michael D. Fayer, 2007,Correction to the Energies,Two cases: i m (the degenerate states) and i m.,Copyright Michael D. Fayer, 2007,is a system of m of equations for the cjs.,Copyright Michael D. Fayer, 2007,Solve mth degree equation get the . Now have the corrections to energies.,To find
12、 the correct zeroth order eigenvectors, one for each , substitute (one at a time) into system of equations.,Get system of equations for the coefficients, cjs.,There are only m 1 conditions because can multiply everything by constant.Use normalization for mth condition.,Now we have the correct zeroth
13、 order functions.,Know the .,Copyright Michael D. Fayer, 2007,The solutions to the mth degree equation (expanding determinant) are,Therefore, to first order, the energies of the perturbed initially degeneratestates are,Have m different (unless some still degenerate).,Copyright Michael D. Fayer, 2007,Correction to wavefunctions,Again using equation found substituting the expansions intothe first order equation,Copyright Michael D. Fa
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度齊齊哈爾誠(chéng)譽(yù)物業(yè)管理有限公司招聘工作人員備考題庫(kù)參考答案詳解
- 2026年包頭輕工職業(yè)技術(shù)學(xué)院面向社會(huì)公開(kāi)招聘工作人員9人的備考題庫(kù)及完整答案詳解一套
- 2026年彌勒市緊密型市域醫(yī)共體西一分院公開(kāi)招聘合同制醫(yī)學(xué)檢驗(yàn)科醫(yī)生的備考題庫(kù)及參考答案詳解
- 2026年麗水市蓮城物業(yè)管理有限公司招聘?jìng)淇碱}庫(kù)完整參考答案詳解
- 2026年天津市靜海區(qū)北師大實(shí)驗(yàn)學(xué)校合同制教師招聘81人備考題庫(kù)(僅限應(yīng)屆畢業(yè)生)及完整答案詳解一套
- 2026年零售行業(yè)創(chuàng)新報(bào)告及智慧門(mén)店建設(shè)趨勢(shì)報(bào)告
- 東臺(tái)市2025江蘇鹽城市東臺(tái)市發(fā)展和改革委員會(huì)招聘勞務(wù)派遣工作人員2人筆試歷年參考題庫(kù)典型考點(diǎn)附帶答案詳解(3卷合一)
- 上海上海市第六人民醫(yī)院公開(kāi)招聘79人筆試歷年典型考點(diǎn)題庫(kù)附帶答案詳解
- 上海上海對(duì)外經(jīng)貿(mào)大學(xué)公開(kāi)招聘工作人員筆試歷年典型考點(diǎn)題庫(kù)附帶答案詳解
- 上海2025年上海市文物交流中心招聘工作人員筆試歷年??键c(diǎn)試題專(zhuān)練附帶答案詳解
- 2025年西藏公開(kāi)遴選公務(wù)員筆試試題及答案解析(綜合類(lèi))
- 揚(yáng)州市梅嶺中學(xué)2026屆八年級(jí)數(shù)學(xué)第一學(xué)期期末綜合測(cè)試試題含解析
- 末梢血標(biāo)本采集指南
- GB/T 46156-2025連續(xù)搬運(yùn)設(shè)備安全規(guī)范通用規(guī)則
- AI賦能的虛擬仿真教學(xué)人才培養(yǎng)模式創(chuàng)新報(bào)告
- 數(shù)據(jù)管理能力成熟度評(píng)估模型(DCMM)評(píng)估師資格培訓(xùn)試題及答案
- 工程變更簽證培訓(xùn)課件
- 自然分娩的好處
- 教練技術(shù)一階段課件
- 國(guó)企跟投管理辦法
- 中考聽(tīng)力說(shuō)課課件
評(píng)論
0/150
提交評(píng)論