版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、課題:2.2.3向量的數(shù)乘(1)班級: 姓名: 學號: 第 學習小組【學習目標】1、理解向量數(shù)乘的含義,掌握向量數(shù)乘的運算律;2、理解數(shù)乘的運算律與實數(shù)乘法的運算律的區(qū)別與聯(lián)系。【課前預習】1、質點從點出發(fā)做勻速直線運動,若經過的位移對應的向量用表示,那么在同方向上經過的位移所對應的向量可用來表示;提問:這里是何種運算的結果?2、向量數(shù)乘的定義:一般地,實數(shù)與向量的積是一個_,記作_,它的長度和方向規(guī)定如下:(1)_;(2)當時,與方向_;當時,與方向_;當時,_; 當時,_。3、實數(shù)與向量相乘,叫做向量的數(shù)乘。注意:向量數(shù)乘的結果是一個向量。4、向量數(shù)乘的運算律(1)_; (2) _;(3)
2、_?!菊n堂研討】例1、已知向量和向量,求作向量和向量。例2、計算(1) (2)思考:向量數(shù)乘與實數(shù)乘法有哪些的相同點和不同點?例3、如圖,在平行四邊形ABCD中,試用,表示向量和。ABCDO【學后反思】向量數(shù)乘運算及其幾何意義;數(shù)乘的運算律及其與實數(shù)乘法運算的聯(lián)系與區(qū)別。課題:2.2.3向量的數(shù)乘檢測案(1) 班級: 姓名: 學號: 第 學習小組【課堂檢測】1、化簡計算:(1) (2)2、已知向量和向量,求作向量:(1) (2)3、已知向量,求(用表示)4、已知和是不共線向量,(),試用和表示向量。5、已知非零向量,求向量的模大小?!菊n后鞏固】1、若是的中線,已知,則_。2、已知,是不共線向量
3、,實數(shù)滿足向量等式,則_,_。3、設為線段的中點,若,則_。4、計算:(1) (2)5、已知三條邊,的中點分別為,求證:6、已知為兩個不共線的向量,且,其中是實數(shù)。求證: 課題:2.2.3向量的數(shù)乘(1)班級: 姓名: 學號: 第 學習小組【學習目標】1、理解向量數(shù)乘的含義,掌握向量數(shù)乘的運算律;2、理解數(shù)乘的運算律與實數(shù)乘法的運算律的區(qū)別與聯(lián)系?!菊n前預習】1、質點從點出發(fā)做勻速直線運動,若經過的位移對應的向量用表示,那么在同方向上經過的位移所對應的向量可用來表示;提問:這里是何種運算的結果?2、向量數(shù)乘的定義:一般地,實數(shù)與向量的積是一個_,記作_,它的長度和方向規(guī)定如下:(1)_;(2)
4、當時,與方向_;當時,與方向_;當時,_; 當時,_。3、實數(shù)與向量相乘,叫做向量的數(shù)乘。注意:向量數(shù)乘的結果是一個向量。4、向量數(shù)乘的運算律(1)_; (2) _;(3)_?!菊n堂研討】例1、已知向量和向量,求作向量和向量。例2、計算(1) (2)思考:向量數(shù)乘與實數(shù)乘法有哪些的相同點和不同點?例3、如圖,在平行四邊形ABCD中,試用,表示向量和。ABCDO【學后反思】向量數(shù)乘運算及其幾何意義;數(shù)乘的運算律及其與實數(shù)乘法運算的聯(lián)系與區(qū)別。課題:2.2.3向量的數(shù)乘檢測案(1) 班級: 姓名: 學號: 第 學習小組【課堂檢測】1、化簡計算:(1) (2)2、已知向量和向量,求作向量:(1) (2)3、已知向量,求(用表示)4、已知和是不共線向量,(),試用和表示向量。5、已知非零向量,求向量的模大小?!菊n后鞏固】1、若是的中線,已知,則_。2、已知,是不共線向量,實數(shù)滿足向量等式,則_,_。3、
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 家具公司新產品導入方案
- (2026年)pbl教學糖尿病酮癥酸中毒課件
- 室內施工揚塵防治專項方案
- 某家具公司市場調研工作制度
- 碳八抽提苯乙烯裝置操作工安全管理測試考核試卷含答案
- 化妝品配方師安全理論考核試卷含答案
- 數(shù)控沖床操作工安全實踐知識考核試卷含答案
- 2025-2030醫(yī)療檢測設備行業(yè)市場需求分析及技術研發(fā)與臨床應用價值調研
- 發(fā)酵工程制藥工安全培訓考核試卷含答案
- 2025-2030醫(yī)療護理機器人行業(yè)市場供需分析及投資評估規(guī)劃分析研究報告
- 白內障疾病教學案例分析
- 2026中國電信四川公用信息產業(yè)有限責任公司社會成熟人才招聘備考題庫完整參考答案詳解
- 2026年黃委會事業(yè)單位考試真題
- 供水管網(wǎng)及配套設施改造工程可行性研究報告
- 2026年及未來5年中國高帶寬存儲器(HBM)行業(yè)市場調查研究及投資前景展望報告
- 英語試卷浙江杭州市學軍中學2026年1月首考適應性考試(12.29-12.30)
- 生產車間停線制度
- EVE國服歷史匯編
- 排水管道溝槽土方開挖專項方案
- 室內裝飾工程施工組織設計方案
- 馬克思是如何學習外語的
評論
0/150
提交評論