11.1.1 三角形的邊.ppt_第1頁
11.1.1 三角形的邊.ppt_第2頁
11.1.1 三角形的邊.ppt_第3頁
11.1.1 三角形的邊.ppt_第4頁
11.1.1 三角形的邊.ppt_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、11.1.1 三角形的邊,第十一章 三角形,線段,角,相交線,平行線,三角形,一條線,兩條線,三條線,溫故知新,射線,直線,幾何圖形,C,B,A,新知學習,根據小學所學的知識,說一說你對三角形有哪些認識?請大家小組交流2分鐘,并由小組代表展示匯報。,徐嘉萌,新知學習,徐綺蔓,新知學習,王思萌,腰與底邊不相等,新知學習,李杭潮,蔡挺,新知學習,新知學習,陳晨,新知學習,三角形,定義,分類,性質,C,B,A,新知學習,徐嘉萌,A,D,C,B,E,圖中有幾個三角形? 用符號表示這些三角形。,答:圖中有5個三角形, 它們是:ABE BCE CDE ABC BCD,你是怎么找的?,課堂練習,變式:,(1

2、)以E為頂點的三角形有哪些?,ABE、BCE、ECD,(2)以A為內角的三角形有哪些?,ABE、ABC,新知學習,李杭潮,徐綺蔓,王思萌,腰與底邊不相等,(1),三邊都相等的三角形叫做等邊三角形(如圖1),(2),底角,(3),有兩條邊都相等的三角形叫做等腰三角形(如圖2),三邊都不相等的三角形叫做不等邊三角形(如圖3),等邊三角形,等腰三角形,不等邊 三角形,三角形 (按邊的相等關系),三角形分類,蔡挺,新知學習,實驗操作,推理論證,動手擺一擺,兩點之間線段最短,探究性質,幾何語言:,AB+AC BC,BC+ACAB ,AB+BCAC ,探究:任意畫一個ABC,從點B出發(fā),沿三角形的邊到點C

3、,有幾條線路可以選擇?,各條線路的長有什么關系?,三角形兩邊的和大于第三邊,三角形兩邊的差小于第三邊,由 移項得BCAB-AC,BCAC-AB, ,(3) 6,5,11 ( ) (4) 12,7,6 ( ),1.下列長度的三條線段能否組成三角形?為什么?,應用新知,(1) 3,8,4 ( ) (2) 7,4,5 ( ),不能,不能,能,能,思考:你是怎么判斷三條線段能否組成三角形的?,解題策略: 只要滿足較小的兩條線段之和大于最長線段, 便可構成三角形;若不滿足,則不能構成三角形.,2.請在下列橫線上填一個數字,使得這三個長度的 線段能構成三角形 7 ,4, _.,3x11,3.用一條長為18cm的細繩圍成一個等腰三角形, (1)如果腰長是底邊的2倍,那么各邊的長是多少? (2)能圍成有一邊的長為4cm的等腰三角形嗎?為什么?,解題策略: (1)對“邊”進行分類討論; (2)考慮三邊能否構成一個三角形.,應用新知,角,相交線,平行線,簡單,數學思想方法:,類比思想,轉化思想,分類討論思想,體會感悟,線段,射線,直線,三角形,定義,性質,角,邊,四邊形,性質,邊,角,多邊形,分類,定義,分類,對角線,復雜,研究幾何圖形的基本思路,必做題: 作業(yè)本 選做題:,作業(yè)布置,如圖,若ABC的三邊長為a,b,c, 試化簡:|

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論