十年熱考___題根何在.ppt_第1頁
十年熱考___題根何在.ppt_第2頁
十年熱考___題根何在.ppt_第3頁
十年熱考___題根何在.ppt_第4頁
十年熱考___題根何在.ppt_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、1,命題內(nèi)參,十年熱考 題根何在,阿波羅圓情結(jié)深,2,【考題】 (08,江蘇,13),命題內(nèi)參,十年熱考 題根何在,這道題目,考了十年之久,2008年又考了:,【說明】 有的解對了,有的解錯了;有的一望而答,有的稿紙連篇,綜合評價是:有新意,此題出的很好!,【點評】新意很好,就是拿著“題根”推陳出新好,3,思路1 向 三角形面積公式尋根,則: ,所以,所以,所以,顯然當 x2=12,即 時,三角形面積有最大值,【解答】設(shè) BC =x,則 ,作CDAB于D,設(shè) DB= y,,【點評】 一道5分的填空題,尋得一個“無理函數(shù)”,值嗎?,命題內(nèi)參,4,在ABC 中得 ,則當 時, 的最大值為 .,思路

2、2 向正弦面積公式尋根,又,所以 ,【解答】 ABC 的面積 , 設(shè)BC=x,得 .,【點評】 殊途同歸,尋得同一個“無理函數(shù)”!巧合嗎?,命題內(nèi)參,5,【解答】設(shè)BC = x,得 ,,由海倫公式 (其中 ),得,當 時, 的最在值為 .,思路3 向三邊面積公式尋根,【分析】為何還是尋得同一個“無理函數(shù)”?,因為你設(shè)了同一個自變量 BC = x , 故尋得同一個函數(shù)!,其結(jié)果與三種不同的“思路”(中間過程)無關(guān)!,命題內(nèi)參,6,思路4:從函數(shù)式轉(zhuǎn)向軌跡方程,【解答】建立如圖的坐標系,設(shè)C(x,y),A(-1,0)、B(1,0),由 得 .,化得 , 方程顯示:C點的軌跡是為以(3,0) 為圓心

3、,以 為半徑的圓.,ABC 高的最大為 圓的半徑 .,【點評】轉(zhuǎn)向方程,數(shù)形結(jié)合,運算量減少!,題根何在?莫非就是這個圓?這是個什么圓?,命題內(nèi)參,7,教材尋根 找到此圓,【題根】現(xiàn)行高中課本(必修)數(shù)學(xué)第二冊(上)例題 :,已知一曲線是與兩個定點O(0,0)、A(3,0)距離之比 為 的點的軌跡,求此曲線的方程.,點 C 的軌跡方程是,動點 的軌跡方程是,命題內(nèi)參,8,圓兄圓弟 出自一家,【追根】更換題根中的距離之比和線段長,即得考題軌跡方程.,點 C 的軌跡方程是,動點 的軌跡方程是,【請問】兄弟貴姓?,【答曰】阿波羅!,命題內(nèi)參,9,有請阿波羅 全族集合,【軌跡】動點 P(x、y) 到定

4、點F1(-c,0)、F2(c,0)的距離之比為.(c,為正數(shù)) 求 P (x、y) 的軌跡方程 .,【討論】方程的圖形是什么?,(1)=1時,得 x = 0 , 即阿波羅直線;,(2)1時,可以判定方程的軌跡是圓:阿波羅圓.,命題內(nèi)參,10,阿波羅軌跡的和諧美,【阿波羅圓】動點 P 到兩定點F 1、F 2 距離之比為定值(c,為正數(shù)). 則動點 P 的軌跡是阿波羅圓(線).,【和諧之美】 阿波羅圓(線)有四美:,(3)兩族曲線的對應(yīng)美;,【圓錐曲線】動點 P 到定點F與定直線 L 的距離之比為定值. 則動點 P 的軌跡是二次曲線線 .,(1)直線與圓的統(tǒng)一美;,(2)量變質(zhì)變的運動美;,(4)

5、解幾圖形的完整美 .,命題內(nèi)參,11,阿波羅圓 小題小作,【大作】 5分的填空題,搬動無理函數(shù) :,【中作】 5分的填空題,搬動軌跡方程:,【小作】 阿波羅圓的圓心在直線 AB 上, 拿線段 AB 的內(nèi)、外分點的連線段為直徑 .,因此,阿波羅圓的問題可以從平面退到軸上解決!,命題內(nèi)參,12,阿波羅圓的軸上解決,【簡解】動點C 到定點A (- 1,0)和B(1,0)距離之比為,得 為內(nèi)分點, 為外分點 .,ABC 高的最大值是 .,命題內(nèi)參,13,【考題1】設(shè) A( -3,0),B( 3,0) 為兩定點,動點P到A點的距離與到B點的距離為定比1 :2,則P點的軌跡圖形所圍得的面積是 ( ) .

6、(1999年全國卷),【考題2】已知兩定點 A(-2,0),B(1,0),如果動點P 滿足|PA|=2|PB|,則點P的軌跡所包圍的面積等于( ) A. B.4 C.8 D.9 (2006年四川卷),阿波羅圓 考題展覽,【尋根】定比1 :2未變,但兩定點間的距離由3變6.,【尋根】定比1 :2變成2,但兩定點間的距離變.,命題內(nèi)參,14,【考題3】設(shè) A( -c,0),B( c,0) ( c0)為兩定點,動點P到A點的距離與到B點的距離的比為定值a (a 0),求P點的軌跡方程及圖形. (2003年北京卷),阿波羅圓 考題展覽,【尋根】定比與定距已經(jīng)一般化,圖形要討論.,【略解】,(1)當 a

7、=1時,得 x =0.圖形是直線.,(2)當 a1時,方程化為,軌跡圖形是以 為圓心,以 為半徑的圓.,命題內(nèi)參,15,阿波羅 伸向圓的切割線,【尋根】兩定點用兩定圓替換,距離之比用切線長之比替換.,【點評】至此,阿波羅圓與圓冪問題鏈接.,【略解】,軌跡是以(6,0)為圓心,以 為半徑的圓.,即,命題內(nèi)參,16,阿波羅圓 伸向角的平分線,【考題5】ABC中,角C的平分線交 AB于點 T,且 AT = 2, TB = 1. 若AB上的高線長為2,求 ABC的周長.,【尋根】定比 2 :1,定距為3.,【略解】按角分線的性質(zhì) 有C A : C B = AT :T B = 2 :1,點C 的軌跡是直徑為4的圓.,圓的半徑 2 為三角形的高線.,【點評】至此,阿波羅圓與角的平分線(內(nèi)、外)鏈接.,(再勾股定理求C A 、 C B的長度),命題內(nèi)參,17,阿波羅圓 伸向定比分點,【點評】與定比分點鏈接,完成了阿波羅圓“身與魂的合一”.,【略解】BM : MA = OB : OA = 3 : 1,設(shè) M (x,y),解得A點的坐標:,代入 x2 + y2 =1,這就是點 M 的軌跡方程.,命題內(nèi)參,18,阿波羅圓是定比圓,比是根

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論