高中數(shù)學(xué)必修二知識點總結(jié)_第1頁
高中數(shù)學(xué)必修二知識點總結(jié)_第2頁
高中數(shù)學(xué)必修二知識點總結(jié)_第3頁
高中數(shù)學(xué)必修二知識點總結(jié)_第4頁
高中數(shù)學(xué)必修二知識點總結(jié)_第5頁
已閱讀5頁,還剩5頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、高中數(shù)學(xué)必修二知識點總結(jié):立體幾何初步1、柱、錐、臺、球的結(jié)構(gòu)特征(1)棱柱:幾何特征:兩底面是對應(yīng)邊平行的全等多邊形;側(cè)面、對角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形.(2)棱錐幾何特征:側(cè)面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點到截面距離與高的比的平方.(3)棱臺:幾何特征:上下底面是相似的平行多邊形側(cè)面是梯形側(cè)棱交于原棱錐的頂點(4)圓柱:定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成幾何特征:底面是全等的圓;母線與軸平行;軸與底面圓的半徑垂直;側(cè)面展開圖是一個矩形.(5)圓錐:定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)

2、一周所成幾何特征:底面是一個圓;母線交于圓錐的頂點;側(cè)面展開圖是一個扇形.(6)圓臺:定義:以直角梯形的垂直與底邊的腰為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成幾何特征:上下底面是兩個圓;側(cè)面母線交于原圓錐的頂點;側(cè)面展開圖是一個弓形.(7)球體:定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體幾何特征:球的截面是圓;球面上任意一點到球心的距離等于半徑.2、空間幾何體的三視圖定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側(cè)視圖(從左向右)、俯視圖(從上向下)注:正視圖反映了物體的高度和長度;俯視圖反映了物體的長度和寬度;側(cè)視圖反映了物體的高度和寬度.3、空間幾何體的直觀圖斜二測畫法斜二測畫法

3、特點:原來與x軸平行的線段仍然與x平行且長度不變;原來與y軸平行的線段仍然與y平行,長度為原來的一半.4、柱體、錐體、臺體的表面積與體積(1)幾何體的表面積為幾何體各個面的面積的和.(2)特殊幾何體表面積公式(c為底面周長,h為高,為斜高,l為母線)(3)柱體、錐體、臺體的體積公式高中數(shù)學(xué)必修二知識點總結(jié):直線與方程(1)直線的傾斜角定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角.特別地,當(dāng)直線與x軸平行或重合時,我們規(guī)定它的傾斜角為0度.因此,傾斜角的取值范圍是0 y-b=(b-0)(x-0)/(0-a) =bx+ay=ab其中直線與軸交于點(a,0),與y軸交于點(0,b),即與x

4、軸、y軸的截距分別為a,b.一般式:y=Ax2+Bx+C (A,B不全為0)注意:各式的適用范圍特殊的方程如:平行于x軸的直線:y=b(b為常數(shù));平行于y軸的直線:x=a(a為常數(shù));(5)直線系方程:即具有某一共同性質(zhì)的直線(一)平行直線系平行于已知直線(是不全為0的常數(shù))的直線系(二)垂直直線系垂直于已知直線(是不全為0的常數(shù))的直線系(三)過定點的直線系(6)兩直線平行與垂直注意:利用斜率判斷直線的平行與垂直時,要注意斜率的存在與否.(7) 兩條直線的交點相交交點坐標即方程組的一組解.方程組無解;方程組有無數(shù)解與重合(8)兩點間距離公式:設(shè)(x1,y1)(x2,y2)是平面直角坐標系中

5、的兩個點(9)點到直線距離公式:一點(x0,y0)到直線Ax+By+C的距離(10)兩平行直線距離公式Ax+By+C1=0Ax+By+C2=0兩平行直線間的距離就是從一條直線上任一點到另一條直線的距離,設(shè)點P(a,b)在直線Ax+By+C1=0上,則滿足Aa+Bb+C1=0,即Ab+Bb=-C1,由點到直線距離公式,P到直線Ax+By+C2=0距離為d=|Aa+Bb+C2|/(A2+B2)=|-C1+C2|/(A2+B2)=|C1-C2|/(A2+B2)轉(zhuǎn)化為點到直線的距離進行求解.高中數(shù)學(xué)必修二知識點總結(jié):圓的方程1、圓的定義:平面內(nèi)到一定點的距離等于定長的點的集合叫圓,定點為圓心,定長為圓

6、的半徑.2、圓的方程(1)標準方程,(x-a)+(y-b)=r圓心(a,b),半徑為r;(2)一般方程x2+y2+Dx+Ey+F=0 (D2+E2-4F0)當(dāng)R!=0時,方程表示圓,此時圓心為(a,b),半徑為R當(dāng)R=0時,表示一個點(3)求圓方程的方法:一般都采用待定系數(shù)法:先設(shè)后求.確定一個圓需要三個獨立條件,若利用圓的標準方程,需求出a,b,r;若利用一般方程,需要求出D,E,F;另外要注意多利用圓的幾何性質(zhì):如弦的中垂線必經(jīng)過原點,以此來確定圓心的位置.高中數(shù)學(xué)必修二知識點總結(jié):直線與圓的位置關(guān)系:直線與圓的位置關(guān)系有相離,相切,相交三種情況(2)過圓外一點的切線:k不存在,驗證是否成

7、立k存在,設(shè)點斜式方程,用圓心到該直線距離=半徑,求解k,得到方程【一定兩解】(3)過圓上一點的切線方程:圓(x-a)2+(y-b)2=r2,圓上一點為(x0,y0),則過此點的切線方程為(x0-a)(x-a)+(y0-b)(y-b)=r24、圓與圓的位置關(guān)系:通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定.注意:已知圓上兩點,圓心必在中垂線上;已知兩圓相切,兩圓心與切點共線4、空間點、直線、平面的位置關(guān)系公理1:如果一條直線的兩點在一個平面內(nèi),那么這條直線是所有的點都在這個平面內(nèi).應(yīng)用:判斷直線是否在平面內(nèi)用符號語言表示公理1: 公理2:如果兩個不重合的平面有一個公共點,那么它們

8、有且只有一條過該點的公共直線符號:平面和相交,交線是a,記作=a.符號語言: 公理2的作用:它是判定兩個平面相交的方法.它說明兩個平面的交線與兩個平面公共點之間的關(guān)系:交線必過公共點.它可以判斷點在直線上,即證若干個點共線的重要依據(jù).公理3:經(jīng)過不在同一條直線上的三點,有且只有一個平面.推論:一直線和直線外一點確定一平面;兩相交直線確定一平面;兩平行直線確定一平面.公理3及其推論作用:它是空間內(nèi)確定平面的依據(jù)它是證明平面重合的依據(jù)公理4:平行于同一條直線的兩條直線互相平行高中數(shù)學(xué)必修二知識點總結(jié):空間直線與直線之間的位置關(guān)系異面直線定義:不同在任何一個平面內(nèi)的兩條直線異面直線性質(zhì):既不平行,又

9、不相交.異面直線判定:過平面外一點與平面內(nèi)一點的直線與平面內(nèi)不過該店的直線是異面直線異面直線所成角:作平行,令兩線相交,所得銳角或直角,即所成角.兩條異面直線所成角的范圍是(0,90,若兩條異面直線所成的角是直角,我們就說這兩條異面直線互相垂直.求異面直線所成角步驟:A、利用定義構(gòu)造角,可固定一條,平移另一條,或兩條同時平移到某個特殊的位置,頂點選在特殊的位置上.B、證明作出的角即為所求角C、利用三角形來求角(7)等角定理:如果一個角的兩邊和另一個角的兩邊分別平行,那么這兩角相等或互補.(8)空間直線與平面之間的位置關(guān)系直線在平面內(nèi)有無數(shù)個公共點.三種位置關(guān)系的符號表示:aa=Aa(9)平面與

10、平面之間的位置關(guān)系:平行沒有公共點;相交有一條公共直線.=b5、空間中的平行問題(1)直線與平面平行的判定及其性質(zhì)線面平行的判定定理:平面外一條直線與此平面內(nèi)一條直線平行,則該直線與此平面平行.線線平行線面平行線面平行的性質(zhì)定理:如果一條直線和一個平面平行,經(jīng)過這條直線的平面和這個平面相交,那么這條直線和交線平行.線面平行線線平行(2)平面與平面平行的判定及其性質(zhì)兩個平面平行的判定定理(1)如果一個平面內(nèi)的兩條相交直線都平行于另一個平面,那么這兩個平面平行(線面平行面面平行),(2)如果在兩個平面內(nèi),各有兩組相交直線對應(yīng)平行,那么這兩個平面平行.(線線平行面面平行),(3)垂直于同一條直線的兩

11、個平面平行,兩個平面平行的性質(zhì)定理(1)如果兩個平面平行,那么某一個平面內(nèi)的直線與另一個平面平行.(面面平行線面平行)(2)如果兩個平行平面都和第三個平面相交,那么它們的交線平行.(面面平行線線平行)7、空間中的垂直問題(1)線線、面面、線面垂直的定義兩條異面直線的垂直:如果兩條異面直線所成的角是直角,就說這兩條異面直線互相垂直.線面垂直:如果一條直線和一個平面內(nèi)的任何一條直線垂直,就說這條直線和這個平面垂直.平面和平面垂直:如果兩個平面相交,所成的二面角(從一條直線出發(fā)的兩個半平面所組成的圖形)是直二面角(平面角是直角),就說這兩個平面垂直.(2)垂直關(guān)系的判定和性質(zhì)定理線面垂直判定定理和性

12、質(zhì)定理判定定理:如果一條直線和一個平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直這個平面.性質(zhì)定理:如果兩條直線同垂直于一個平面,那么這兩條直線平行.面面垂直的判定定理和性質(zhì)定理判定定理:如果一個平面經(jīng)過另一個平面的一條垂線,那么這兩個平面互相垂直.性質(zhì)定理:如果兩個平面互相垂直,那么在一個平面內(nèi)垂直于他們的交線的直線垂直于另一個平面.9、空間角問題(1)直線與直線所成的角兩平行直線所成的角:規(guī)定為.兩條相交直線所成的角:兩條直線相交其中不大于直角的角,叫這兩條直線所成的角.兩條異面直線所成的角:過空間任意一點O,分別作與兩條異面直線a,b平行的直線,形成兩條相交直線,這兩條相交直線所成的不大于

13、直角的角叫做兩條異面直線所成的角.(2)直線和平面所成的角平面的平行線與平面所成的角:規(guī)定為.平面的垂線與平面所成的角:規(guī)定為.平面的斜線與平面所成的角:平面的一條斜線和它在平面內(nèi)的射影所成的銳角,叫做這條直線和這個平面所成的角.求斜線與平面所成角的思路類似于求異面直線所成角:“一作,二證,三計算”.在“作角”時依定義關(guān)鍵作射影,由射影定義知關(guān)鍵在于斜線上一點到面的垂線,在解題時,注意挖掘題設(shè)中兩個主要信息:(1)斜線上一點到面的垂線;(2)過斜線上的一點或過斜線的平面與已知面垂直,由面面垂直性質(zhì)易得垂線.(3)二面角和二面角的平面角二面角的定義:從一條直線出發(fā)的兩個半平面所組成的圖形叫做二面

14、角,這條直線叫做二面角的棱,這兩個半平面叫做二面角的面.二面角的平面角:以二面角的棱上任意一點為頂點,在兩個面內(nèi)分別作垂直于棱的兩條射線,這兩條射線所成的角叫二面角的平面角.直二面角:平面角是直角的二面角叫直二面角.兩相交平面如果所組成的二面角是直二面角,那么這兩個平面垂直;反過來,如果兩個平面垂直,那么所成的二面角為直二面角求二面角的方法定義法:在棱上選擇有關(guān)點,過這個點分別在兩個面內(nèi)作垂直于棱的射線得到平面角垂面法:已知二面角內(nèi)一點到兩個面的垂線時,過兩垂線作平面與兩個面的交線所成的角為二面角的平面角高中數(shù)學(xué)必修二知識點總結(jié):解三角形(1)正弦定理和余弦定理掌握正弦定理、余弦定理,并能解決

15、一些簡單的三角形度量問題.(2)應(yīng)用能夠運用正弦定理、余弦定理等知識和方法解決一些與測量和幾何計算有關(guān)的實際問題.高中數(shù)學(xué)必修二知識點總結(jié):數(shù)列(1)數(shù)列的概念和簡單表示法了解數(shù)列的概念和幾種簡單的表示方法(列表、圖象、通項公式).了解數(shù)列是自變量為正整數(shù)的一類函數(shù).(2)等差數(shù)列、等比數(shù)列理解等差數(shù)列、等比數(shù)列的概念.掌握等差數(shù)列、等比數(shù)列的通項公式與前項和公式.能在具體的問題情境中,識別數(shù)列的等差關(guān)系或等比關(guān)系,并能用有關(guān)知識解決相應(yīng)的問題.了解等差數(shù)列與一次函數(shù)、等比數(shù)列與指數(shù)函數(shù)的關(guān)系.高中數(shù)學(xué)必修二知識點總結(jié):不等式高中數(shù)學(xué)必修二知識點總結(jié):不等關(guān)系了解現(xiàn)實世界和日常生活中的不等關(guān)系,了解不等式(組)的實際背景.(2)一元二次不等式會從實際情境中抽象出一元二次不等

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論