水利工程論文-利用神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)地形面的曲面構(gòu)造.doc_第1頁(yè)
水利工程論文-利用神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)地形面的曲面構(gòu)造.doc_第2頁(yè)
水利工程論文-利用神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)地形面的曲面構(gòu)造.doc_第3頁(yè)
水利工程論文-利用神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)地形面的曲面構(gòu)造.doc_第4頁(yè)
水利工程論文-利用神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)地形面的曲面構(gòu)造.doc_第5頁(yè)
已閱讀5頁(yè),還剩4頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

水利工程論文-利用神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)地形面的曲面構(gòu)造摘要:提出用神經(jīng)網(wǎng)絡(luò)方法解決地形面的曲面構(gòu)造問(wèn)題,在BackPropagation(簡(jiǎn)稱BP)算法的基礎(chǔ)上,吸取了模擬退火算法的優(yōu)點(diǎn),神經(jīng)網(wǎng)絡(luò)的學(xué)習(xí)按概率隨機(jī)接受一個(gè)不成功訓(xùn)練值的方法,解決了BP算法容易陷入局部極小點(diǎn)的問(wèn)題。通過(guò)對(duì)黃河下游河灘地形面的模擬證明,此方法可解決地形面的曲面構(gòu)造問(wèn)題。關(guān)鍵詞:地形面自由曲面神經(jīng)網(wǎng)絡(luò)BP算法模擬退火1引言在水利及土木工程中經(jīng)常會(huì)遇到地形面,地形面是典型的空間自由曲面,地形面在給出時(shí),往往只給出一些反映地形、地貌特征的離散點(diǎn),而無(wú)法給出描述地形面的曲面方程。然而有時(shí)需要對(duì)地形面進(jìn)行描述,或者當(dāng)給出的地形面的點(diǎn)不完整時(shí),需要插補(bǔ)出合理的點(diǎn)。以往大多用最小二乘法或其它曲面擬合方法如三次參數(shù)樣條曲面、Bezier曲面或非均勻有理B樣條曲面等,這些擬合方法的缺點(diǎn)是:型值點(diǎn)一旦給定,就不能更改,否則必須重新構(gòu)造表達(dá)函數(shù);在構(gòu)造曲線曲率變化較大或型值點(diǎn)奇異時(shí),容易產(chǎn)生畸變,有時(shí)需要人為干預(yù);此外,這些方法對(duì)數(shù)據(jù)格式都有要求。神經(jīng)網(wǎng)絡(luò)技術(shù)借用基于人類智能(如學(xué)習(xí)和自適應(yīng))的模型、模糊技術(shù)方法,利用人類的模糊思想來(lái)求解問(wèn)題,在許多領(lǐng)域優(yōu)于傳統(tǒng)技術(shù)。用神經(jīng)網(wǎng)絡(luò)進(jìn)行地形面構(gòu)造,只要測(cè)量有限個(gè)點(diǎn)(可以是無(wú)序的),不需要其它更多的地形面信息和曲面知識(shí),當(dāng)?shù)匦蚊鎻?fù)雜或者是測(cè)量數(shù)據(jù)不完整時(shí),用神經(jīng)網(wǎng)絡(luò)方法更具優(yōu)勢(shì),而且還可以自動(dòng)處理型值點(diǎn)奇異情況。本文提出用BP神經(jīng)網(wǎng)絡(luò)結(jié)合模擬退火算法進(jìn)行地形面的曲面構(gòu)造。2模型與算法的選擇為了對(duì)地形面進(jìn)行曲面構(gòu)造,首先要有一些用于神經(jīng)網(wǎng)絡(luò)訓(xùn)練的初始樣本點(diǎn),對(duì)所建立的神經(jīng)網(wǎng)絡(luò)進(jìn)行學(xué)習(xí)訓(xùn)練,學(xué)習(xí)訓(xùn)練的本質(zhì)就是通過(guò)改變網(wǎng)絡(luò)神經(jīng)元之間的連接權(quán)值,使網(wǎng)絡(luò)能將樣本集的內(nèi)涵以聯(lián)結(jié)權(quán)矩陣的方式存儲(chǔ)起來(lái),從而具有完成某些特殊任務(wù)的能力。權(quán)值的改變依據(jù)是樣本點(diǎn)訓(xùn)練時(shí)產(chǎn)生的實(shí)際輸出和期望輸出間的誤差,按一定方式來(lái)調(diào)整網(wǎng)絡(luò)權(quán)值,使誤差逐漸減少,當(dāng)誤差降到給定的范圍內(nèi),就可認(rèn)為學(xué)習(xí)結(jié)束,學(xué)習(xí)結(jié)束后,神經(jīng)網(wǎng)絡(luò)模型就可用于地形面的構(gòu)造。BP網(wǎng)是一種單向傳播的多層前向網(wǎng)絡(luò)。網(wǎng)絡(luò)除輸入輸出節(jié)點(diǎn)外,還有一層或多層的隱層節(jié)點(diǎn),同層節(jié)點(diǎn)中沒(méi)有任何耦合。輸入信號(hào)從輸入層節(jié)點(diǎn)依次傳過(guò)各隱層節(jié)點(diǎn),然后傳到輸出節(jié)點(diǎn),每一層節(jié)點(diǎn)的輸出只影響下一層節(jié)點(diǎn)的輸出。其節(jié)點(diǎn)單元傳遞函數(shù)通常為Sigmoid型。BP算法使神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)中一種廣泛采用的學(xué)習(xí)算法,具有簡(jiǎn)單、有效、易于實(shí)現(xiàn)等優(yōu)點(diǎn)。但因?yàn)锽P算法是一種非線性優(yōu)化方法,因此有可能會(huì)陷入局部極小點(diǎn),無(wú)法得到預(yù)期結(jié)果,為解決BP算法的這一缺點(diǎn),本文將模擬退火算法結(jié)合到BP算法中。模擬退火算法是神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)中另一種被廣泛采用的一種學(xué)習(xí)算法。它的基本出發(fā)點(diǎn)就是金屬的退火過(guò)程和一般組合優(yōu)化問(wèn)題之間的相似性。在金屬熱加工過(guò)程中,要想使固體金屬達(dá)到低能態(tài)的晶格,需要將金屬升溫熔化,使其達(dá)到高能態(tài),然后逐步降溫,使其凝固。若在凝固點(diǎn)附近,溫度降速足夠慢,則金屬一定可以形成最低能態(tài)。對(duì)優(yōu)化問(wèn)題來(lái)說(shuō),它也有類似的過(guò)程,它的解空間中的每一個(gè)點(diǎn)都代表一個(gè)解,每個(gè)解都有自己的目標(biāo)函數(shù),優(yōu)化實(shí)際上就是在解空間中尋找目標(biāo)函數(shù)使其達(dá)到最小或最大解。(如果將網(wǎng)絡(luò)的訓(xùn)練看成是讓網(wǎng)絡(luò)尋找最低能量狀態(tài)的過(guò)程,取網(wǎng)絡(luò)的目標(biāo)函數(shù)為它的能量函數(shù),再定義一個(gè)初值較大的數(shù)為人工溫度T。同時(shí),在網(wǎng)絡(luò)的這個(gè)訓(xùn)練過(guò)程中,依據(jù)網(wǎng)絡(luò)的能量和溫度來(lái)決定聯(lián)結(jié)權(quán)的調(diào)整量(稱為步長(zhǎng))。這種做法與金屬的退火過(guò)程非常相似,所以被稱為模擬退火算法。)模擬退火算法用于神經(jīng)網(wǎng)絡(luò)訓(xùn)練的基本思想是,神經(jīng)網(wǎng)絡(luò)的連接權(quán)值W可看作物體體系內(nèi)的微觀狀態(tài),網(wǎng)絡(luò)實(shí)際輸出和期望輸出的誤差e可看作物體的內(nèi)能,對(duì)網(wǎng)絡(luò)訓(xùn)練的目的就是找到恰當(dāng)?shù)臓顟B(tài)W使其內(nèi)能e最小,因此設(shè)置一個(gè)參數(shù)T來(lái)類比退火溫度,然后在溫度T下計(jì)算當(dāng)前神經(jīng)網(wǎng)絡(luò)的e與上次訓(xùn)練的e的差e,按概率exp(-e/T)來(lái)接受訓(xùn)練權(quán)值,減小溫度T,這樣重復(fù)多次,只要T下降足夠慢,且T0,則網(wǎng)絡(luò)一定會(huì)穩(wěn)定在最小的狀態(tài)。模擬退火算法雖然可以達(dá)到全局最優(yōu),但需要較長(zhǎng)時(shí)間,BP算法采用梯度下降方式使收斂速度相對(duì)較快。為取長(zhǎng)補(bǔ)短,我們將兩種算法結(jié)合起來(lái),采用BP算法的梯度快速下降方式,同時(shí)利用模擬退火算法技術(shù)按概率隨機(jī)接受一個(gè)不成功的訓(xùn)練結(jié)果,使梯度快速下降過(guò)程產(chǎn)生一些隨機(jī)噪聲擾動(dòng),從而既保證了網(wǎng)絡(luò)訓(xùn)練的快速度下降,又保證了訓(xùn)練結(jié)果的最優(yōu)性。3網(wǎng)絡(luò)結(jié)構(gòu)與學(xué)習(xí)算法3.1網(wǎng)絡(luò)結(jié)構(gòu)如何選擇網(wǎng)絡(luò)的隱層數(shù)和節(jié)點(diǎn)數(shù),還沒(méi)有確切的方法和理論,通常憑經(jīng)驗(yàn)和實(shí)驗(yàn)選取。本文采用的BP網(wǎng)絡(luò)結(jié)構(gòu)如

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論