外文翻譯運(yùn)用緊湊相鄰法則對(duì)非規(guī)則零件圖樣進(jìn)行大規(guī)模編排.doc_第1頁(yè)
外文翻譯運(yùn)用緊湊相鄰法則對(duì)非規(guī)則零件圖樣進(jìn)行大規(guī)模編排.doc_第2頁(yè)
外文翻譯運(yùn)用緊湊相鄰法則對(duì)非規(guī)則零件圖樣進(jìn)行大規(guī)模編排.doc_第3頁(yè)
外文翻譯運(yùn)用緊湊相鄰法則對(duì)非規(guī)則零件圖樣進(jìn)行大規(guī)模編排.doc_第4頁(yè)
外文翻譯運(yùn)用緊湊相鄰法則對(duì)非規(guī)則零件圖樣進(jìn)行大規(guī)模編排.doc_第5頁(yè)
已閱讀5頁(yè),還剩12頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

Large-scalenestingofirregularpatternsusingcompactneighborhoodalgorithmS.K.Cheng,K.P.Rao*Thetypicalnestingtechniquethatiswidelyusedisthegeometricaltiltingofasinglepatternorselectedclusterstepbystepfromtheoriginalpositiontoanorientationof1808,i.e.orthogonalpacking.However,thisisablindsearchofbeststocklayoutand,geometrically,itbecomesinefcientwhenseveralpatternentitiesareinvolved.Also,itisnothighlysuitableforhandlingpatternswitharangeoforientationconstraints.Inthispaper,analgorithmisproposedwhichcombinesthecompactneighborhoodalgorithm(CNA)withthegeneticalgorithm(GA)tooptimizelarge-scalenestingprocesseswiththeconsiderationofmultipleorientationconstraints.#2000ElsevierScienceS.A.Allrightsreserved.Keywords:Cuttingstockproblem;Nesting;Compactneighborhoodalgorithm;Geneticalgorithm;Orientationconstraints1.IntroductionThecuttingstockproblemisofinteresttomanyindustrieslikegarment,paper,shipbuilding,andsheetmetalindus-tries.GilmoreandGomory7haveinitiatedtheresearchworktosolvetherectangularcuttingstockproblembyusinglinearprogramming.Fortheirregularcase,Adamowicz1attemptedtouseaheuristicapproachwhichdividestheproblemintotwosub-problems,calledclusteringandnest-ing.Clusteringistospecifyacollectionofpatternsthattwelltogetherbeforenestingontoagivenstock.Nestingofpatternsorclusterscanbebroadlydividedintotwobroadcategories,namely,small-scaleandlarge-scale.Thediffer-encebetweenthemisthelevelofduplicationoftheclusteronthegivenstock.Forsmall-scalenesting,weonlyneedtondtheinter-orientationrelationshipbetweentheselectedclusterandthegivenstock4.However,theproblembecomesmorecomplicatedforlarge-scalenestingsincetheinter-spacerelationshipbetweentheduplicatedclustersshouldalsobeconsidered.Traditionally,twobasictechni-quesarepopularlyusedforgeneratingthistypeofnesting:hexagonalapproximationandorthogonalnesting.Atypicalpattern,showninFig.1a,withbothconcaveandconvexfeatures,isselectedtoexplainthesetechniques.The*Correspondingauthor.Tel.:852-2788-8409;fax:852-2788-8423.E-mailaddress:.hk(K.P.Rao)patterncontourisplottedwiththehelpofadigitizer,asshowninFig.1b,andhasanarea(Ap)of74.44sq.units.InthehexagonalapproximationsuggestedbyDoriandBen-Bassat5,thepatternisrstapproximatedusingaconvexpolygonwhichisfurtherapproximatedbyanotherconvexpolygonwithfewernumberofentitiesuntilanhexagonalenclosureisobtained,asshowninFig.1c.Thehexagonisthenpavedonagivenstockwithnooverlappingoftheformer6.TheresultantlayoutgeneratedbyuseofthistechniqueisgiveninFig.1e.Itisreadilyevidentthatthetechniqueisnothighlyefcientduetothepoorapprox-imationperformance,especiallyinthecaseofhighlyirre-gularpatterns.Anotherproblemisthatthepatternorclustercanassumetwopositionsonly(0or1808),withnoexploita-tionorconsiderationofotherpermissiblerangeoforienta-tions.Inthesecondtechnique,usedbyNee9,thenestingprocessisachievedbyapproximatingasinglepattern/clusterbyarectangleasshowninFig.1d.Thisrectangleisthenduplicatedinanorthogonalway,resultinginthelayoutshowninFig.1f.Thistechniquecanbeeasilyappliedwhenthereareno-orpartial-orientationconstraints,i.e.thesinglepatternorclustercanrotatewithinacertainrangewhilettingitonthestock.Likethehexagonalapproximation,themaindisadvantageofthisapproachisthatthealgorithmsperformanceishighlydependentontheshapeofpatterns.Moreover,inthecaseofmultipleorientationconstraints,the0924-0136/00/$seefrontmatter#2000ElsevierScienceS.A.Allrightsreserved.PII:S0924-0136(00)00402-7136S.K.Cheng,K.P.Rao/JournalofMaterialsProcessingTechnology103(2000)135140Fig.1.(a)ThechosenatpatternfordemonstratingtheworkingprincipleofCNAalgorithm;(b)patterncontourobtainedbydigitizer;(c)hexagonalapproximation;(d)orthogonalapproximation;(e)layoutgeneratedbyusinghexagonalapproximationyieldingastockutilizationof60.05%;(f)layoutgeneratedbyusingorthogonalapproximationyieldingastockutilizationof67.14%;and(g)layoutgeneratedbyusingCNAyieldingastockutilizationof74.10%.timetakentoestimateasuitablerotationangleforthepatternsisalwaysmuchlonger.Inordertoincreasetheaccuracyandspeedofnesting,ChengandRao4proposedacompactneighborhoodalgorithm(CNA)thatconsiderstherelationshipbetweenthenumberofneighborsandthesharingspacebetweenthem.Fig.1gshowsatypicallayoutgeneratedusingCNAwhichnormallyyieldshigherpackingdensitywhencom-paredwiththeorthogonalandhexagonalapproximations.However,CNA,initspresentform,hasbeenmainlydesig-natedfornestingofpatternswiththeconsiderationoffullorientationconstraints,andisnotidealforsituationswheremorefreedomisavailableintheorientationofpatterns.ThisstudyisaimedatimprovingtheexibilityofCNAbyincorporatingtheavailablefreedomintheorientationofpatternsandageneticalgorithm(GA)thatfollowsnaturalrulestooptimizethegeneratedlayouts.ThenewtechniqueistranslatedintoacomputerprogramwritteninCobject-orientedlanguage.Thenewalgorithmcanhandletheproblemofnestingtwo-dimensionalatpatternsofanyshapecontaininglinesegmentsandarcs.Withthehelpofatypicalexample,theenhancedcapabilitiesofCNAandtheassociatedcomputerprogramwillbedemonstratedinthispaper.2.Descriptionofcompactneighborhoodalgorithm(CNA)ACNA4tracksthecharacteristicsoftheevolvingneighborhoodswhenthepatternsaremovedtoformdifferentarrangements,assummarizedschematicallyinFig.2ac.Asthesheardisplacementincreases,theupperandlowerneighborstendtocollapseduetothechangeincrystallizationdirections.Finally,amostcompactstructureandanumericalvalueformaterialyield,calleduniversalcompactutilization(UCU),canbeobtained.NomatterFig.2.Typicalneighborhoodstructuresforcircularpatterns(a)formationoforthogonalpackingunitcellwithNn8andApu16r2;(b)shearingoflayersleadingtoshearedorthogonalpacking;and(c)bestcompactstructurewithhexagonalpackingunitcellwithNn6andAu63r2,whereAuistheareaofaunitcell,rtheradiusofcircularpatternandNnisthenumberofneighborstoconstructtheunitcell.S.K.Cheng,K.P.Rao/JournalofMaterialsProcessingTechnology103(2000)135140137Fig.3.(a)Stepsinvolvedinthegenerationofself-slidingpathtocreateaneighborhood;and(b)optimalneighborhoodstructurewithhexagonalpackingunitcellwithaUCUof83.07%.whetherthepatterncanberotatedornot,UCUindicatestheupperlimitofyieldthatmaybepossiblewithanychosenstockandhencecanberegardedasanindexforstoppingcriteriainthenestingprocess.Themainstepsinvolvedinndingthecompactneighbor-hoodare:(1)generatingaself-slidingpathorano-t-polygon(NFP)1,asshowninFig.3a,whichguidestherelativemovementbetweentwopatternswiththeconsidera-tionofnooverlapping;and(2)deningthecrystallizationdirections,asshowninFig.3b,thatprovideessentialdataforbuildingthewholeneighborhoodbyllingthegivenstockduringlarge-scalenesting.3.Proposedalgorithmforlarge-scalenestingTheproposedtechniquesofenhancingthecapabilitiesofCNAbytakingadvantageofageneticalgorithmaredealtinthissection.Aatpatterncanbedividedintoentitiesoflinesegmentsandarcs.Polygonalrepresentationmethods2expandthisstructuretolltheentirestock.Fornestingofpatternswithfullorientationconstraint,itisonlynecessarytodecideanestingvectorCDnthatdeneswheretheneighborhoodshouldbetranslatedaroundthegivenstock.However,inthecaseofnestingofpatternswithlimitedornoorientationlimitations,theproblembecomesmorecompli-catedduetoanincreaseinthepossiblecombinationsthatweneedtoconsider.Inthiscase,therststepwhichisglobalwithorwithoutorientationlimitationsistotranslatetheneighborhoodtoanarbitrarypositioninsidethegivenstock,i.e.deningavectorCDn.Afterward,anestingangleynistobedeterminedsothatagoodorientationisselectedfortheneighborhoodtogrow.Alltherequiredgeometricalopera-tionsaresummarizedinFig.4.ItiscriticaltooptimizeCDnandynwhichcannallyleadtoamostcompactneighborhoodstructure.Itisbelievedthattherearenouniquemathematicalstepstocalculatetheseparametersforanytypeofstock.Inaddition,wecannotacceptanexhaustivesearchbecauseoftheconstraintsposedoncomputationtime,especiallyinthecaseofnestingofpatternswithtoolongacomputationtime,especiallywhilenestingpatternswithmanyentitiesandconcavefeatures.Hence,inthisstudy,arecentpopularoptimizationtechni-que,calledGA,isapplied.Themainprincipleisprovidedinthefollowingsection.3.2.GAforoptimizinglayoutsGA8maintainsapopulationofcandidateproblemsolutions.Basedontheirperformance,thettestofthesesolutionsnotonlysurvive,and,analogoustosexualrepro-duction,exchangeinformationwithothercandidatestoformanewgeneration.Beforestartinganygeneticoperation,oneneedstodenethetnessfunctionandthecodingmethod.Asmentionedearlier,thegoalinnestingofpatternsistoreducethescrapbyttingtheclusterstogethersothattheyoccupyaminimumarea.Torepresentthecompactnessofaparticularlayout,onecanbecondentthatthemostdirectwayistorelateitwiththestockyieldfxYypy(1)canbeusedtorepresentbothconcaveandconvexarcsassetsofstraightlines.Theactualnumberoflinesisdependentontherequiredaccuracylevel.Also,clearanceoroffsetgen-erationisanessentialstepthatcontributestowardsthesuccessofCAD/CAMtechnology.Analgorithmtogeneratetherequiredoffset,calledthreepointislandtracing(TPIT)technique2,isincorporatedinthepresentnestingsystem.3.1.CNAforlarge-scalenestingIntheprevioussection,wehavealreadymentionedthebasicstepsinvolvedinobtainingthebestcompactneighbor-hood,asshowninFig.3b.Ournextconcernisthedetermi-nationofthebestpositiontoplacetherstpatternandxwherexistheareaofthegivenstockandythetotalareaofthepatternsthatcouldbecutoutfromthegivenstock.Codingcandirectlyandindirectlyinuencetheoptimi-zationprocess.Thisisbecauseourmainconcernishowtoxthetranslationposition(i.e.nestingvectorCDn)andthedegreeofrotation(i.e.nestingangleyn).Theyarethusselectedasthecodingparametersthatguidetheproperties(i.e.correspondingtonaturalchromosomes)forexchangeinthegeneticoperatorsofcross-overandmutation.3.3.ThegeneticoperatorsAsproposedbyHollandetal.8,theGAaimsatoptimizingthesolutionbymimickingnaturesevolutionary138S.K.Cheng,K.P.Rao/JournalofMaterialsProcessingTechnology103(2000)135140Fig.4.Translationoftheneighborhoodtoapre-denedpositionwithnestingvectorCDcess.LikehumanbeingsatypicalGAcontainsthefollowinggeneticoperators.3.3.1.InitializationAtthebeginning,a

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論