已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
Large-scalenestingofirregularpatternsusingcompactneighborhoodalgorithmS.K.Cheng,K.P.Rao*Thetypicalnestingtechniquethatiswidelyusedisthegeometricaltiltingofasinglepatternorselectedclusterstepbystepfromtheoriginalpositiontoanorientationof1808,i.e.orthogonalpacking.However,thisisablindsearchofbeststocklayoutand,geometrically,itbecomesinefcientwhenseveralpatternentitiesareinvolved.Also,itisnothighlysuitableforhandlingpatternswitharangeoforientationconstraints.Inthispaper,analgorithmisproposedwhichcombinesthecompactneighborhoodalgorithm(CNA)withthegeneticalgorithm(GA)tooptimizelarge-scalenestingprocesseswiththeconsiderationofmultipleorientationconstraints.#2000ElsevierScienceS.A.Allrightsreserved.Keywords:Cuttingstockproblem;Nesting;Compactneighborhoodalgorithm;Geneticalgorithm;Orientationconstraints1.IntroductionThecuttingstockproblemisofinteresttomanyindustrieslikegarment,paper,shipbuilding,andsheetmetalindus-tries.GilmoreandGomory7haveinitiatedtheresearchworktosolvetherectangularcuttingstockproblembyusinglinearprogramming.Fortheirregularcase,Adamowicz1attemptedtouseaheuristicapproachwhichdividestheproblemintotwosub-problems,calledclusteringandnest-ing.Clusteringistospecifyacollectionofpatternsthattwelltogetherbeforenestingontoagivenstock.Nestingofpatternsorclusterscanbebroadlydividedintotwobroadcategories,namely,small-scaleandlarge-scale.Thediffer-encebetweenthemisthelevelofduplicationoftheclusteronthegivenstock.Forsmall-scalenesting,weonlyneedtondtheinter-orientationrelationshipbetweentheselectedclusterandthegivenstock4.However,theproblembecomesmorecomplicatedforlarge-scalenestingsincetheinter-spacerelationshipbetweentheduplicatedclustersshouldalsobeconsidered.Traditionally,twobasictechni-quesarepopularlyusedforgeneratingthistypeofnesting:hexagonalapproximationandorthogonalnesting.Atypicalpattern,showninFig.1a,withbothconcaveandconvexfeatures,isselectedtoexplainthesetechniques.The*Correspondingauthor.Tel.:852-2788-8409;fax:852-2788-8423.E-mailaddress:.hk(K.P.Rao)patterncontourisplottedwiththehelpofadigitizer,asshowninFig.1b,andhasanarea(Ap)of74.44sq.units.InthehexagonalapproximationsuggestedbyDoriandBen-Bassat5,thepatternisrstapproximatedusingaconvexpolygonwhichisfurtherapproximatedbyanotherconvexpolygonwithfewernumberofentitiesuntilanhexagonalenclosureisobtained,asshowninFig.1c.Thehexagonisthenpavedonagivenstockwithnooverlappingoftheformer6.TheresultantlayoutgeneratedbyuseofthistechniqueisgiveninFig.1e.Itisreadilyevidentthatthetechniqueisnothighlyefcientduetothepoorapprox-imationperformance,especiallyinthecaseofhighlyirre-gularpatterns.Anotherproblemisthatthepatternorclustercanassumetwopositionsonly(0or1808),withnoexploita-tionorconsiderationofotherpermissiblerangeoforienta-tions.Inthesecondtechnique,usedbyNee9,thenestingprocessisachievedbyapproximatingasinglepattern/clusterbyarectangleasshowninFig.1d.Thisrectangleisthenduplicatedinanorthogonalway,resultinginthelayoutshowninFig.1f.Thistechniquecanbeeasilyappliedwhenthereareno-orpartial-orientationconstraints,i.e.thesinglepatternorclustercanrotatewithinacertainrangewhilettingitonthestock.Likethehexagonalapproximation,themaindisadvantageofthisapproachisthatthealgorithmsperformanceishighlydependentontheshapeofpatterns.Moreover,inthecaseofmultipleorientationconstraints,the0924-0136/00/$seefrontmatter#2000ElsevierScienceS.A.Allrightsreserved.PII:S0924-0136(00)00402-7136S.K.Cheng,K.P.Rao/JournalofMaterialsProcessingTechnology103(2000)135140Fig.1.(a)ThechosenatpatternfordemonstratingtheworkingprincipleofCNAalgorithm;(b)patterncontourobtainedbydigitizer;(c)hexagonalapproximation;(d)orthogonalapproximation;(e)layoutgeneratedbyusinghexagonalapproximationyieldingastockutilizationof60.05%;(f)layoutgeneratedbyusingorthogonalapproximationyieldingastockutilizationof67.14%;and(g)layoutgeneratedbyusingCNAyieldingastockutilizationof74.10%.timetakentoestimateasuitablerotationangleforthepatternsisalwaysmuchlonger.Inordertoincreasetheaccuracyandspeedofnesting,ChengandRao4proposedacompactneighborhoodalgorithm(CNA)thatconsiderstherelationshipbetweenthenumberofneighborsandthesharingspacebetweenthem.Fig.1gshowsatypicallayoutgeneratedusingCNAwhichnormallyyieldshigherpackingdensitywhencom-paredwiththeorthogonalandhexagonalapproximations.However,CNA,initspresentform,hasbeenmainlydesig-natedfornestingofpatternswiththeconsiderationoffullorientationconstraints,andisnotidealforsituationswheremorefreedomisavailableintheorientationofpatterns.ThisstudyisaimedatimprovingtheexibilityofCNAbyincorporatingtheavailablefreedomintheorientationofpatternsandageneticalgorithm(GA)thatfollowsnaturalrulestooptimizethegeneratedlayouts.ThenewtechniqueistranslatedintoacomputerprogramwritteninCobject-orientedlanguage.Thenewalgorithmcanhandletheproblemofnestingtwo-dimensionalatpatternsofanyshapecontaininglinesegmentsandarcs.Withthehelpofatypicalexample,theenhancedcapabilitiesofCNAandtheassociatedcomputerprogramwillbedemonstratedinthispaper.2.Descriptionofcompactneighborhoodalgorithm(CNA)ACNA4tracksthecharacteristicsoftheevolvingneighborhoodswhenthepatternsaremovedtoformdifferentarrangements,assummarizedschematicallyinFig.2ac.Asthesheardisplacementincreases,theupperandlowerneighborstendtocollapseduetothechangeincrystallizationdirections.Finally,amostcompactstructureandanumericalvalueformaterialyield,calleduniversalcompactutilization(UCU),canbeobtained.NomatterFig.2.Typicalneighborhoodstructuresforcircularpatterns(a)formationoforthogonalpackingunitcellwithNn8andApu16r2;(b)shearingoflayersleadingtoshearedorthogonalpacking;and(c)bestcompactstructurewithhexagonalpackingunitcellwithNn6andAu63r2,whereAuistheareaofaunitcell,rtheradiusofcircularpatternandNnisthenumberofneighborstoconstructtheunitcell.S.K.Cheng,K.P.Rao/JournalofMaterialsProcessingTechnology103(2000)135140137Fig.3.(a)Stepsinvolvedinthegenerationofself-slidingpathtocreateaneighborhood;and(b)optimalneighborhoodstructurewithhexagonalpackingunitcellwithaUCUof83.07%.whetherthepatterncanberotatedornot,UCUindicatestheupperlimitofyieldthatmaybepossiblewithanychosenstockandhencecanberegardedasanindexforstoppingcriteriainthenestingprocess.Themainstepsinvolvedinndingthecompactneighbor-hoodare:(1)generatingaself-slidingpathorano-t-polygon(NFP)1,asshowninFig.3a,whichguidestherelativemovementbetweentwopatternswiththeconsidera-tionofnooverlapping;and(2)deningthecrystallizationdirections,asshowninFig.3b,thatprovideessentialdataforbuildingthewholeneighborhoodbyllingthegivenstockduringlarge-scalenesting.3.Proposedalgorithmforlarge-scalenestingTheproposedtechniquesofenhancingthecapabilitiesofCNAbytakingadvantageofageneticalgorithmaredealtinthissection.Aatpatterncanbedividedintoentitiesoflinesegmentsandarcs.Polygonalrepresentationmethods2expandthisstructuretolltheentirestock.Fornestingofpatternswithfullorientationconstraint,itisonlynecessarytodecideanestingvectorCDnthatdeneswheretheneighborhoodshouldbetranslatedaroundthegivenstock.However,inthecaseofnestingofpatternswithlimitedornoorientationlimitations,theproblembecomesmorecompli-catedduetoanincreaseinthepossiblecombinationsthatweneedtoconsider.Inthiscase,therststepwhichisglobalwithorwithoutorientationlimitationsistotranslatetheneighborhoodtoanarbitrarypositioninsidethegivenstock,i.e.deningavectorCDn.Afterward,anestingangleynistobedeterminedsothatagoodorientationisselectedfortheneighborhoodtogrow.Alltherequiredgeometricalopera-tionsaresummarizedinFig.4.ItiscriticaltooptimizeCDnandynwhichcannallyleadtoamostcompactneighborhoodstructure.Itisbelievedthattherearenouniquemathematicalstepstocalculatetheseparametersforanytypeofstock.Inaddition,wecannotacceptanexhaustivesearchbecauseoftheconstraintsposedoncomputationtime,especiallyinthecaseofnestingofpatternswithtoolongacomputationtime,especiallywhilenestingpatternswithmanyentitiesandconcavefeatures.Hence,inthisstudy,arecentpopularoptimizationtechni-que,calledGA,isapplied.Themainprincipleisprovidedinthefollowingsection.3.2.GAforoptimizinglayoutsGA8maintainsapopulationofcandidateproblemsolutions.Basedontheirperformance,thettestofthesesolutionsnotonlysurvive,and,analogoustosexualrepro-duction,exchangeinformationwithothercandidatestoformanewgeneration.Beforestartinganygeneticoperation,oneneedstodenethetnessfunctionandthecodingmethod.Asmentionedearlier,thegoalinnestingofpatternsistoreducethescrapbyttingtheclusterstogethersothattheyoccupyaminimumarea.Torepresentthecompactnessofaparticularlayout,onecanbecondentthatthemostdirectwayistorelateitwiththestockyieldfxYypy(1)canbeusedtorepresentbothconcaveandconvexarcsassetsofstraightlines.Theactualnumberoflinesisdependentontherequiredaccuracylevel.Also,clearanceoroffsetgen-erationisanessentialstepthatcontributestowardsthesuccessofCAD/CAMtechnology.Analgorithmtogeneratetherequiredoffset,calledthreepointislandtracing(TPIT)technique2,isincorporatedinthepresentnestingsystem.3.1.CNAforlarge-scalenestingIntheprevioussection,wehavealreadymentionedthebasicstepsinvolvedinobtainingthebestcompactneighbor-hood,asshowninFig.3b.Ournextconcernisthedetermi-nationofthebestpositiontoplacetherstpatternandxwherexistheareaofthegivenstockandythetotalareaofthepatternsthatcouldbecutoutfromthegivenstock.Codingcandirectlyandindirectlyinuencetheoptimi-zationprocess.Thisisbecauseourmainconcernishowtoxthetranslationposition(i.e.nestingvectorCDn)andthedegreeofrotation(i.e.nestingangleyn).Theyarethusselectedasthecodingparametersthatguidetheproperties(i.e.correspondingtonaturalchromosomes)forexchangeinthegeneticoperatorsofcross-overandmutation.3.3.ThegeneticoperatorsAsproposedbyHollandetal.8,theGAaimsatoptimizingthesolutionbymimickingnaturesevolutionary138S.K.Cheng,K.P.Rao/JournalofMaterialsProcessingTechnology103(2000)135140Fig.4.Translationoftheneighborhoodtoapre-denedpositionwithnestingvectorCDcess.LikehumanbeingsatypicalGAcontainsthefollowinggeneticoperators.3.3.1.InitializationAtthebeginning,a
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026屆江西省南昌市三校聯(lián)考數(shù)學(xué)高一下期末質(zhì)量跟蹤監(jiān)視試題含解析
- 2026年森林康養(yǎng)指導(dǎo)員專項考試題及答案
- 魯迅鑄劍課件
- 2026年智能酒飲煙熏器項目公司成立分析報告
- 魯豫的冷知識與熱愛情
- 2026年元宇宙產(chǎn)業(yè)金融項目公司成立分析報告
- 2026年個人氣象站套件項目公司成立分析報告
- 2026年衛(wèi)星應(yīng)急通信指揮項目可行性研究報告
- 2026年緊急求助按鈕 (SOS)項目可行性研究報告
- 2026年數(shù)字藏品融合項目公司成立分析報告
- 挖機、裝載機三級安全教育試卷(附答案)
- 人機共智?創(chuàng)變未來:千夢引擎AI內(nèi)容營銷白皮書
- 旅游行業(yè)股權(quán)合作方案設(shè)計范文
- 棋牌室轉(zhuǎn)讓合同協(xié)議書
- 抖音公會考試試題及答案
- 部門建設(shè)標(biāo)準(zhǔn)化管理
- 吊車租賃合同范本
- 財務(wù)年終總結(jié)概覽
- 合伙投資煙酒店協(xié)議書范本
- 護理團體標(biāo)準(zhǔn)解讀-成人氧氣吸入療法護理
- DL-T 5861-2023 電化學(xué)儲能電站初步設(shè)計內(nèi)容深度規(guī)定
評論
0/150
提交評論