已閱讀5頁,還剩1頁未讀, 繼續(xù)免費閱讀
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
ORIGINALARTICLEPseudo-constructaltheoryforshapeoptimizationofmechanicalstructuresJeanLucMarcelinReceived:10January2007/Accepted:1May2007/Publishedonline:25May2007#Springer-VerlagLondonLimited2007AbstractThisworkgivessomeapplicationsofapseudo-constructaltechniqueforshapeoptimizationofmechanicalstructures.Inthepseudo-constructaltheorydevelopedinthispaper,themainobjectiveofoptimizationisonlytheminimizationoftotalpotentialenergy.Theotherobjectivesusuallyusedinmechanicalstructuresoptimizationaretreatedlikelimitationsoroptimizationconstraints.Twoapplicationsarepresented;thefirstonedealswiththeoptimizationoftheshapeofadropofwaterbyusingageneticalgorithmwiththepseudo-constructaltechnique,andthesecondonedealswiththeoptimizationoftheshapeofahydraulichammersrearbearing.KeywordsShapeoptimization.Constructal.Geneticalgorithms1IntroductionThispaperintroducesapseudo-constructalapproachtoshapeoptimizationbasedontheminimizationofthetotalpotentialenergy.Wearegoingtoshowthatminimizingthetotalpotentialenergyofastructuretofindtheoptimalshapemightbeagoodideainsomecases.Thereferencetotheconstructaltheorycanbejustifiedinsomewayforthefollowingreasons.AccordingtoBejan1,shapeandstructurespringfromthestruggleforbetterperformanceinbothengineeringandnature;theobjectiveandconstraintsprincipleusedinengineeringisthesamemechanismfromwhichthegeometryinnaturalflowsystemsemerges.Bejan1startswiththedesignandoptimizationofengineeringsystemsanddiscoversadeterministicprincipleforthegenerationofgeometricforminnaturalsystems.Thisobservationisthebasisofthenewconstructaltheory.Optimaldistributionofimperfectionisdestinedtoremainimperfect.Thesystemworksbestwhenitsimperfectionsarespreadaroundsothatmoreandmoreinternalpointsarestressedasmuchasthehardestworkingparts.Seeminglyuniversalgeometricformsunitetheflowsystemsofengineeringandnature.Bejan1advancesanewtheoryinwhichheunabashedlyhintsthathislawisinthesameleagueasthesecondlawofthermodynamics,becauseasimplelawispurportedtopredictthegeometricformofanythingaliveonearth.Manyapplicationsoftheconstructaltheoryweredevelopedinfluidsmechanics,inparticularfortheoptimizationofflows210.Ontheotherhand,thereexists,toourknowledge,littleexamplesofapplicationsinsolidsorstructuresmechanics.Sowehaveatleasthalfofthereferencestopapersinfluiddynamics(mostofthesameauthor),becausetheconstructalmethodwasdevelopedfirstbythesameauthor,AdrianBejan,withonlyreferencestopapersinfluiddynamics.Theconstructaltheoryrestsontheassumptionthatallcreationsofnatureareoveralloptimalcomparedtothelawswhichcontroltheevolutionandtheadaptationofthenaturalsystems.Theconstructalprincipleconsistsofdistributingtheimperfectionsaswellaspossible,startingfromthesmallestscalestothelargest.Theconstructaltheoryworkswiththetotalmacroscopicstructurestartingfromtheassemblyofelementarystruc-tures,bycomplyingwiththenaturalrulesofoptimaldistributionoftheimperfections.Theobjectiveistheresearchoflowercost.IntJAdvManufTechnol(2008)38:16DOI10.1007/s00170-007-1080-2J.L.Marcelin(*)LaboratorieSolsSolidesStructures3S,UMRCNRSC5521,DomaineUniversitaire,BPn53,38041GrenobleCedex9,Francee-mail:Jean-Luc.Marcelinujf-grenoble.frHowever,aglobalandmacroscopicsolutionfortheoptimizationofmechanicalstructureshavingleastcostastheobjectivecanbeveryclosetotheconstructaltheory,fromwherethetermpseudo-constructalcomes.Theconstructaltheoryisapredictivetheory,withonlyonesingleprincipleofoptimizationfromwhichallrises.Thesameappliestothepseudo-constructalstepwhichisthesubjectofthisarticle.Thesingleprincipleofoptimiza-tionofthepseudo-constructaltheoryistheminimizationoftotalpotentialenergy.Moreover,inourexamplespresentedhereafter,thepseudo-constructalprinciplewillbeassociatedwithageneticalgorithm,withtheresultthatouroptimizationwillbeveryclosetothenaturallaws.Theobjectiveofthispaperisthustoshowhowthepseudo-constructalstepcanapplytothemechanicsofthestructures,andinparticulartotheshapeoptimizationofmechanicalstructures.Thebasicideaisverysimple:amechanicalstructureinabalancedstatecorrespondstoaminimaltotalpotentialenergy.Inthesameway,anoptimalmechanicalstructuremustalsocorrespondtoaminimaltotalpotentialenergy,anditisthisobjectivewhichmustintervenefirstoveralltheothers.Itisthisideawhichwillbedevelopedinthisarticle.Twoexampleswillbepresentedthereafter.Theideatominimizetotalpotentialenergyinordertooptimizeamechanicalstructureisnotbrandnew.Manypapersalreadydealwiththisproblem.Whatisnew,istomakethisapproachsystematic.Theonlyobjectiveofoptimizationbecomestheminimizationofenergy.InGosling11,asimplemethodisproposedforthedifficultcaseofform-findingofcablenetandmembranestructures.Thismethodisbaseduponbasicenergyconcepts.Atruncatedstrainexpressionisusedtodefinethetotalpotentialenergy.ThefinalenergyformisminimizedusingthePowellalgorithm.InKannoandOhsaki12,theminimumprincipleofcomplementaryenergyisestablishedforcablenetworksinvolvingonlystresscomponentsasvariablesingeometricallynonlinearelasticity.Inordertoshowthestrongdualitybetweentheminimizationproblemsoftotalpotentialenergyandcomplementaryenergy,theconvexformulationsoftheseproblemsareinvestigated,whichcanbeembeddedintoaprimal-dualpairofsecond-orderprogrammingproblems.InTaroco13,shapesensitivityanalysisofanelasticsolidinequilibriumispresented.Thedomainandboundaryintegralexpressionsofthefirstandsecond-ordershapederivativesofthetotalpotentialenergyareestablished.InWarner14,anoptimaldesignproblemissolvedforanelasticrodhangingunderitsownweight.Thedistributionofthecross-sectionalareathatminimizesthetotalpotentialenergystoredinanequilibriumstateisfound.Thecompanionproblemofthedesignthatstoresthemaximumpotentialenergyunderthesameconstraintconditionsisalsosolved.InVentura15,theproblemofboundaryconditionsenforcementinmeshlessmethodsissolved.InVentura15,themovingleast-squaresapproximationisintroducedinthetotalpotentialenergyfunctionalfortheelasticsolidproblemandanaugmentedLagrangiantermisaddedtosatisfyessentialboundaryconditions.Theprincipleofminimizationoftotalpotentialenergyisinadditionatthebaseofthegeneralfiniteelementsformulation,withanaimoffindingtheunknownoptimalnodalfactors16.2ThemethodsusedInthepseudo-constructaltheorydevelopedinthispaper,themainobjectiveofoptimizationisonlytheminimizationoftotalpotentialenergy.Theotherobjectivesusuallyusedinmechanicalstructuresoptimizationaretreatedherelikelimitationsoroptimizationconstraints.Forexample,onemayhavelimitationsontheweight,ortonotexceedthevalueofastress.Theideawhichwillbedevelopedinthispaperisthusverysimple.Amechanicalstructureisdescribedbytwotypesofparameters:variablesknownasdiscretizationvariables(forexample,degreesoffreedomindisplacementforfiniteelementsmethod),andgeometricalvariablesofdesign(forexampleparameterswhichmakeitpossibletodescribethemechanicalstructureshape).Totalpotentialenergydependsonanimplicitorexplicitwayofdetermin-ingdiscretizationanddesignvariablesatthesametime.Onethuswillcarryoutadoubleoptimizationofthemechanicalstructure,comparedtothediscretizationanddesignvariables;theobjectivebeingtominimizetotalpotentialenergyoverall.Clearly,theproblemofoptimiza-tionofamechanicalstructurewillbeaddressedbythefollowingapproach:Objective:tominimizetotalpotentialenergyVariablesofoptimization:concurrentlydeterminingdiscretizationvariables(inthecaseofatraditionaluseofthefiniteelementmethodinmechanicsofstruc-tures),anddesignvariablesdescribingtheshapeofthestructureOptimizationlimitations:WeightorvolumeDisplacementsorstrainsStressesFrequenciesTheproblemofoptimizationofamechanicalstructurewillbesolvedinthefollowingway,whilereiteratingon2IntJAdvManufTechnol(2008)38:16thesestages,ifneeded(accordingtothenatureoftheproblem):Stage1Minimizationofthetotalpotentialenergyofthemechanicalstructurecomparedtotheonlydis-cretizationvariablesofthestructure(degreesoffreedominfiniteelements).Itactshereasanoptimizationwithoutoptimizationlimitations.Theonlylimitationsatthisstageareofpurelymechanicalorigin,andrelatetotheboundaryconditionsandtotheexternaleffortsappliedtothestructure.Inthisstage1,thedesignvariablesremainfixed,andoneobtainstheimplicitorexplicitexpressionsofthedegreesoffreedomaccordingtothedesignvariables(whichcanbethevariableswhichmakeitpossibletodescribetheshape,inthecaseofashapeoptimization,forexample).Onewillseeintheexamplesofthefollowingpartthattheseexpressionscanbeexplicitorimplicitandwhichisthesuitabletreatmentfollowingthecases.Inthecaseofafiniteelementsmethodofcalculation,thisstage1isthebasisoffiniteelementscalculationtoobtainthedegreesoffreedomofthemechanicalstructure.Indeed,infiniteelements,displacementswiththenodesofthemechanicalstructuremeshareobtainedbyminimizationoftotalpotentialenergy16.Stage2Theexpressionsofthedegreesoffreedomofthemechanicalstructureaccordingtothedesignvariablesobtainedpreviouslyaretheninjectedintothetotalpotentialenergyofthemechanicalstructure(onewillseeinthesecondexampleofthefollowingparthowonetreatsthecasewherethedegreesoffreedomareimplicitfunctionsofthedesignvariables).Onethenobtainsanexpressionofthetotalpotentialenergywhichdependsonlyonthedesignvariables(inexplicitorimplicitform).Stage3Onethencarriesoutasecondandnewminimi-zationofthetotalpotentialenergyobtainedintheprecedingform,butthistimecomparedtothedesignvariableswhilerespectingthetechnolog-icallimitationsortheoptimizationconstraintsoftheproblem.Thismethodcanbeappliedwithmoreorlessfacilityaccordingtothenatureoftheproblem.Itisclear,forexample,thatifthediscretizationvariablescanbeexpressedinanexplicitwayaccordingtothedesignvariables,thesettinginofstages2to3isimmediate,andwithoutiterations.Ifthediscretizationvariablescannotbeexpressedinanexplicitwayaccordingtothedesignvariables,orifthetopologyofthestructureisnotfixed,orifthebehaviorisnotlinear,itwillbenecessarytoproceedbysuccessiveiterationsonstages1to3.Itisthecaseoftheexamplespresentedinthefollowingpart,andonewillseeonthisoccasionwhichtypeofstrategyonecanadoptfortheseiterations.Tosummarize,inthepseudo-constructalstep,themainobjectiveisonlytheminimizationoftotalpotentialenergy,theotherpossibleobjectivesaretreatedlikelimitationsoroptimizationconstraints.TheoptimizationmethodusedforourexamplesisGA(geneticalgorithm),asdescribedin17.Exampleswithsimilarinstructionalvaluecanalsobefoundinmanybooks,e.g.in18.Thisevolutionarymethodisveryconvenientforourpseudo-constructalmethod.TheauthorhasworkedextensivelyinGAsandpublishedinsomereputedjournalsonthistopic1931.AsthetopicofGAsisstillrelativelynewinthestructuralmechanicscommu-nity,weprovideheresomedetailsofexactlywhatisusedinthisGA.Amultiplepointcrossoverisusedratherthanasinglepointcrossover.Theselectionschemeusedateachgenerationisentirelystochastic.Forourexamples,thenumberofgenerationsisequaltothatusedforconver-gence.TheresultsprovidedforourexampleswereconsistentlyreproducedbyusingdifferentseedsintheGA.Ithasbeenprovedthataratherstandardgeneticalgorithmissufficientforourexamples.3ExamplesEventhoughpotentialenergymaybeagoodmeasureforsomeoptimizations,potentialenergyisnotwhatgivestheshapetoawaterdroplet,nordefinestheoptimalshapeforahammer,whichiswhypotentialenergyisnottheonlyobjective;buttheoptimizationproblemisamultiobjectiveoneandtheobjectivefunctionsforthetwoexamplesarethenclearlyformulated.3.1Example1:optimizationoftheshapeofadropofwaterThefirsttestexampleistheoptimizationoftheshapeofadropofwater(Fig.1).Thisproblemisequivalenttoanequalresistancetankcalculatedbythemembranetheory.Theobjectiveistoseeifthepseudo-constructaltheorygivesthenaturesoptimumdesign.3.1.1ThemethodsusedThegeometryofthedropofwaterisdefinedbythegeneratinglineofathinaxisymmetricshell.Thislineisdescribedbysuccessivestraightorcircularsegmentsdescribedinagivensenseanddefinedbyinputdataofmasterpointcoordinatesandradiusvalues.Theinitialdataareasetofnodalpointsconnectedbystraightsegments.EachnodalpointisidentifiedbyitstwocylindricalIntJAdvManufTechnol(2008)38:163coordinates(r,z),andarealRwhichrepresentstheradiusofthecircletangenttothetwostraightsegmentsintersect-ingatthepoint.Theothercomputercalculationsgivethecoordinatesofanyboundarypointandespeciallythetangentpointsnecessarytodefinethecirculararclengths.ThedesignofthedropofwaterisdescribedbythreearcsofcirclesasindicatedinFig.1.Analysisisperformedbythefiniteelementmethodwiththree-nodeparabolicelementsusingtheclassicalLove-Kirchoffshelltheory.Anautomaticmeshgeneratorcreatesthefiniteelementmeshofeachstraightorcircularsegmentconsideredasamacrofiniteelement.Theobjectiveistoobtainashapeforthedropofwatergivingrisetoaminimumtotalpotentialenergy(whichisthemainobjective)andanequalresistancetank(whichistheonlyconstraintorlimitationoftheproblem).Infact,forthedropofwaterproblem,thegoalisamulti-objectiveone,thetwoobjectives(f1=minimumtotalpotentialenergyandf2=equalresistance)arecombinedinamulti-objective:f=f1+f2.TheconstraintorlimitationoftheproblemistakenintoaccountbyapenalizationofthetotalpotentialenergyasindicatedinMarcelinetal.TheresultsThedesignofthedropofwaterisdescribedbythreearcsofacircle(Fig.1).Th
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 烘干車間規(guī)則制度
- 2026年個人時間管理與工作效率提升題集
- 涉企檢查制度
- 汽車維修客戶抱怨受理制度
- 森林防火值班值守制度
- 2026年軟件工程師考試題庫及解題思路解析
- 2026年企業(yè)并購重組財務(wù)咨詢合同協(xié)議
- 2026年景觀裝飾材料安裝服務(wù)合同協(xié)議
- 2025四川內(nèi)江漢江教育管理有限公司招聘2人筆試參考題庫附帶答案詳解
- 2025吉林省高速公路集團(tuán)有限公司靖宇分公司勞務(wù)派遣項目招聘22人筆試參考題庫附帶答案詳解
- DB1331-T 025.1-2022 雄安新區(qū)工程建設(shè)關(guān)鍵質(zhì)量指標(biāo)體系:建筑工程
- 旅游行業(yè)如何玩轉(zhuǎn)視頻號 從0到1開啟私域營銷
- 急腹癥影像診斷課件
- 【《紫鑫藥業(yè)財務(wù)報告審計失敗案列分析》12000字(論文)】
- 三級醫(yī)院營養(yǎng)科建設(shè)方案
- 醫(yī)院外聯(lián)部主任述職報告
- 集團(tuán)內(nèi)部融媒體管理辦法
- ASTM-D1238中文翻譯(熔融流動率、熔融指數(shù)、體積流動速率)
- 2025年浙江省寧波市鎮(zhèn)海中學(xué)高考英語模擬試卷(1月份)
- 短視頻創(chuàng)作-短視頻手機(jī)拍攝與剪輯
- 車輛掛靠駕校合同協(xié)議
評論
0/150
提交評論