已閱讀5頁(yè),還剩8頁(yè)未讀, 繼續(xù)免費(fèi)閱讀
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
英文原文1.IntroductionNowadayslicenseplaterecognitionbecomesakeytechniquetomanyautomatedtransportsystemssuchasroadtrafficmonitoring,automaticpaymentoftollsonhighwaysorbridgesandparkinglotsaccesscontrol.Licenseplatelocationisanessentialandimportantstageinthistechnique,andithasreceivedconsiderableattention.Researchershavefoundmanydiversemethodsoflicenseplatelocation.RodolfoandStefano(2000)devisedamethodbasedonvectorquantization(VQ).VQimagerepresentationisaquadtreerepresentationbythespecificcodingmechanism,anditcangiveasystemsomehintsaboutthecontentsofimageregions,andsuchinformationboostslocationperformance.Parketal.(1999)usedneuralnetworkstolocatelicenseplate.Neuralnetworkscanbeusedasfiltersforanalyzingsmallwindowsofanimageanddecidingwhethereachwindowcontainsalicenseplate,andtheirinputsareHSIvalues;apost-processorcombinesthesefilteredimagesandlocatestheboundingboxesoflicenseplatesintheimage.Besidesneuralnetworks,otherfiltershavebeenconsideredtoo.Forexample,someauthorsusedlinesensitivefilterstoextracttheplateareas.Licenseplatesareidentifiedasimageareaswithhighdensityofratherthindarklinesorcurves.Therefore,localizationishandledlookingforrectangularregionsintheimagecontainingmaximaofresponsetotheselinefilters,whichiscomputedbyacumulativefunction(Luisetal.,1999).Platecharacterscanbedirectidentifiedbyscanningthroughtheinputimageandlookingforportionsoftheimagethatwerenotlinkedtootherpartsoftheimage.Ifanumberofcharactersarefoundtobeinastraightline,theymaymakeupalicenseplate(Limetal.,1998).FuzzylogichasbeenappliedtotheproblemoflocatinglicenseplatebyZimicetal.(1997).Theauthorsmadesomeintuitiverulestodescribethelicenseplate,andgavesomemembershipfunctionsforthefuzzysetsbrightanddark,brightanddarksequencetogetthehorizontalandverticalplatepositions.Butthismethodissensitivetothelicenseplatecolorandbrightnessandneedsmuchprocessingtime.UsingcolorfeaturestolocatelicenseplatehasbeenstudiedbyZhuetal.(2002)andWeietal.(2001),butthesemethodsarenotrobustenoughtothedifferentenvironments.Edgefeaturesofthecarimageareveryimportant,andedgedensitycanbeusedtosuccessfullydetectanumberplatelocationduetothecharacteristicsofthenumberplate.Mingetal.(1996)developedamethodtoimprovetheedgeimagebyeliminatingthehighestandlowestportionsoftheedgedensitytosimplifythewholeimage.Butsomeoftheplateregionidentitywillbelostinthismethod.Thispaperfurtherresearchesthesubjectoflicenseplatelocation.Therectanglelicenseplatecontainsrichedgeandtextureinformation,soweconsideritinitsedgeimagebutverydifferenttoMingetal.(1996).Wefirstenhancetheoriginalcarimagetoboostuptheplatearea,thenextracttheverticaledgeimageusingSobeloperator,andthenremovethebackgroundcurvesandnoiseintheedgeimage,andfinallyslidearectanglewindowtosearchtheplateintheresidualimageandsegmentitoutfromtheoriginalcarimage.Section2describesourmethodoflicenseplatelocation,anditcontainsfourparts:imageenhancement,verticaledgeextraction,backgroundcurveandnoiseremoving,platesearchandsegmentation.ExperimentswiththreesetsofcarimagesareperformedinSection3.Section4givesthediscussionandconclusions.1.TheproposedmethodforlicenseplatelocationAlltheinputcarimageshave384288pixelsand256graylevels,andanexampleimageisgiveninFig.1.Thelicenseplateofthecarconsistsofseveralcharacters(suchasLatinletters,Arabicnumerals,etc.),sotheplateareacontainsrichedgeinformation.Butsometimesthebackgroundofthecarimageholdsmuchedgeinformationtoo.Therearetwofactsthatattractourattention:oneisthatthebackgroundareasaroundthelicenseplatemainlyincludesomehorizontaledges;theotheristhattheedgesinthebackgroundaremainlylongcurvesandrandomnoises,whereastheedgesintheplateareaclustertogetherandproduceintensetexturefeature.Ifonlytheverticaledgesareextractedfromthecarimage(althoughtheplatewilllosealittlehorizontaledgeinformation,thislittlelossistobevaluable)andmostofthebackgroundedgesareremoved,theplateareawillbeisolatedoutdistinctlyinthewholeedgeimage.Thusweproposetolocatethelicenseplateinitsverticaledgeimageasthefollowingfourstages.2.1.ImageenhancementInFig.1,thegradientsinthelicenseplateareaaremuchlowerthanthoseinthecontourareasofthecar,whichiscausedbythecarshadowinthedazzlingsunshine.Thecarimagescapturedinthegloomydaysordimnightsoftenbringoutweakgradientsinplateareastoo.Afewverticaledgeswillappearintheplateareas,ifweextractedgeimagesdirectlyfromthesecarimages.Thereforeitisimportanttoenhancethecarimagesfirstly.Thelocalareasthatneedtobeenhancedinacarimagehavelowvariances.HereweuseIi,jtodenotetheluminanceofthepixelPi,j(row:06i288,column:06j384)inthecarimage,anduseI1i;jtodenotetheluminanceintheenhancedimage.WeletIi,jandI1i;jsatisfyEq.(1),whereWi,jisawindowcenteredonpixelPi,j,IWi;jandrWi;jarethemeanluminanceandstandarddeviationofthepixelsinthewindowWi,j,I0andr0aretheexpectedmeanandstandarddeviation,respectively.0,0,1)(,IIIIjijiwjiwji(1)Inordertorepresentthelocalinformationbetter,thesizeofthewindowshouldbesmallerthantheestimatedsizeoftheplate.Inthispaper,weselecta4836rectangleasthewindowWi,jandthus88windowscancoveroverthewhole384288carimage.LetI0beequaltoIWi;jandr0beaconstantindependentofpixelPi,j.NowweneedtoknowthevaluesIWi;jandrWi;jateachpixel.Computingoutallthevaluesisnotadvisable,andwecanusethebilinearinterpolationalgorithmtogetthem.Firstwecutthecarimageinto88blocksequably;andthencomputeouttheIWi;jandrWi;jvaluesatthevertexesofblocks,wherei=36m,j=48n,m,n=0,1,2,.,8;finallycomputeouteveryIWi;jandrWi;jbythebilinearinterpolationEqs.(2)and(3)(Fig.2),where36m6i36(m+1),48n6j0)Mi,j=maxMi1,j1,Mi1,j,Mi1,j+1,Mi,j1+1;elseMi,j=maxMi2,j1,Mi2,j,Mi2,j+1,Mi1,j2,Mi1,j+2,Mi,j2+1;endendendend3.foreachrowifrombottom-to-topdoforeachcolumnjfr
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030中國(guó)互聯(lián)網(wǎng)金融行業(yè)市場(chǎng)競(jìng)爭(zhēng)分析及投資評(píng)估規(guī)劃分析研究報(bào)告
- 2025-2030中國(guó)互聯(lián)網(wǎng)科技行業(yè)市場(chǎng)現(xiàn)狀技術(shù)分析及投資評(píng)估發(fā)展模式分析研究報(bào)告
- 2025-2030中國(guó)互聯(lián)網(wǎng)汽車行業(yè)商業(yè)模式創(chuàng)新與投資價(jià)值深度報(bào)告
- 2025-2030中國(guó)5G通信設(shè)備制造業(yè)市場(chǎng)格局與前景預(yù)測(cè)報(bào)告
- 2025-2030中國(guó)5G網(wǎng)絡(luò)建設(shè)進(jìn)度與下游應(yīng)用市場(chǎng)預(yù)測(cè)報(bào)告
- 2025年公務(wù)用車使用管理情況自查報(bào)告
- 世界知名營(yíng)銷方案(3篇)
- 口紅活動(dòng)直播策劃方案(3篇)
- 大連全網(wǎng)營(yíng)銷方案(3篇)
- 飯店豆腐營(yíng)銷方案(3篇)
- 2025+CSCO宮頸癌診療指南解讀
- DG-TJ08-2207-2024城市供水管網(wǎng)泵站遠(yuǎn)程監(jiān)控系統(tǒng)技術(shù)標(biāo)準(zhǔn)
- 機(jī)器學(xué)習(xí)與隨機(jī)微分方程的深度集成方法-全面剖析
- 《TSGD7003-2022壓力管道定期檢驗(yàn)規(guī)則-長(zhǎng)輸管道》
- GB/T 45355-2025無(wú)壓埋地排污、排水用聚乙烯(PE)管道系統(tǒng)
- 2025年全國(guó)碩士研究生入學(xué)統(tǒng)一考試 (數(shù)學(xué)二) 真題及解析
- 企業(yè)管理者的領(lǐng)導(dǎo)力培訓(xùn)
- There+be句型練習(xí)題及答案
- 《阻燃腈綸的研究與應(yīng)用》課件
- 吊索具的使用與報(bào)廢標(biāo)準(zhǔn)
- 2024-2025學(xué)年廣東省廣州市越秀區(qū)八年級(jí)(上)期末語(yǔ)文試卷
評(píng)論
0/150
提交評(píng)論