單調(diào)性與最大(最?。┲礯第1頁(yè)
單調(diào)性與最大(最小)值_第2頁(yè)
單調(diào)性與最大(最?。┲礯第3頁(yè)
單調(diào)性與最大(最小)值_第4頁(yè)
單調(diào)性與最大(最?。┲礯第5頁(yè)
已閱讀5頁(yè),還剩2頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、§1.3.2 單調(diào)性與最大(最小)值【教材分析】最值問(wèn)題是生產(chǎn)、科學(xué)研究和日常生活中常遇到的一類(lèi)特殊的數(shù)學(xué)問(wèn)題,是高中數(shù)學(xué)的一個(gè)重點(diǎn),它涉及到高中數(shù)學(xué)知識(shí)的各個(gè)方面,解決這類(lèi)問(wèn)題往往需要綜合運(yùn)用各種技能,靈活選擇合理的解題途徑.本節(jié)課利用單調(diào)性求函數(shù)的最值,目的是讓學(xué)生知道學(xué)習(xí)函數(shù)的單調(diào)性是為了更好地研究函數(shù).利用單調(diào)性不僅僅確定函數(shù)的值域、最值,更重要的是在實(shí)際應(yīng)用中求解利潤(rùn)、費(fèi)用的最大與最小,用料、用時(shí)的最少,流量、銷(xiāo)量的最大,選取的方法最多、最少等問(wèn)題.【教學(xué)目標(biāo)】1.理解并掌握函數(shù)最大(最小)值的概念及其幾何意義,并能利用函數(shù)圖象及函數(shù)單調(diào)性求函數(shù)的最大(最小)值.2.在求函

2、數(shù)最大(最小)值中,提高分析問(wèn)題、創(chuàng)造地解決問(wèn)題的能力,滲透數(shù)形結(jié)合的數(shù)學(xué)思想.【教學(xué)重難點(diǎn)】教學(xué)重點(diǎn):理解函數(shù)最大(最小)值.教學(xué)難點(diǎn):利用函數(shù)的單調(diào)性求函數(shù)最大(最小)值.【教學(xué)設(shè)計(jì)建議】一、導(dǎo)入新課1、生活中,有很多的函數(shù)變化的模型.比如某段時(shí)間的股市變化圖和某市一天24小時(shí)內(nèi)的氣溫變化圖等,分別說(shuō)出股票綜合指數(shù)和氣溫隨時(shí)間變化的特點(diǎn),如相應(yīng)圖象在什么時(shí)候遞增或遞減,有沒(méi)有最大(最小)值等.2、前面我們學(xué)習(xí)了函數(shù)的單調(diào)性,知道了在函數(shù)定義域的某個(gè)區(qū)間上函數(shù)值的變化與自變量增大之間的關(guān)系.從函數(shù)圖象的角度很容易直觀的知道函數(shù)圖象的最高點(diǎn)(或最低點(diǎn)),如何從解析式(函數(shù)值)的角度認(rèn)識(shí)函數(shù)的最

3、大(最小)值呢?【設(shè)計(jì)意圖:根據(jù)生活中的實(shí)際例子認(rèn)識(shí)函數(shù)圖象的變化特征,復(fù)習(xí)函數(shù)的單調(diào)性,引出函數(shù)的最大(最小)值,并使學(xué)生分別從函數(shù)圖象的角度和從解析式的角度刻畫(huà)函數(shù)的最大(最小)值,激發(fā)學(xué)生探究函數(shù)最大(最小)值的概念及其幾何意義的興趣.】二、探索新知(一)畫(huà)出下列函數(shù)的圖象,指出圖象的最高點(diǎn)或最低點(diǎn),并說(shuō)明它能體現(xiàn)函數(shù)的什么特征? (二)觀察上述三個(gè)函數(shù)的圖象,如何用數(shù)學(xué)符號(hào)解釋?zhuān)合鄳?yīng)函數(shù)的圖象有最高點(diǎn)或者最低點(diǎn)?函數(shù)圖象最高點(diǎn)的縱坐標(biāo)是所有函數(shù)值中的最大值,即函數(shù)的最大值.函數(shù)圖象最低點(diǎn)的縱坐標(biāo)是所有函數(shù)值中的最小值,即函數(shù)的最小值.函數(shù)圖象可能只有最高點(diǎn),函數(shù)有最大值,不存在最低點(diǎn),

4、函數(shù)無(wú)最小值;函數(shù)圖象也可能只有最低點(diǎn),函數(shù)有最小值,不存在最高點(diǎn),函數(shù)無(wú)最大值;也可能函數(shù)最大(最小)值都有,或者都無(wú)等等.【設(shè)計(jì)意圖:通過(guò)畫(huà)函數(shù)的圖象,特別是區(qū)間內(nèi)函數(shù)的圖象,先具體感知函數(shù)圖象的最高點(diǎn)與最低點(diǎn)的情況,再思考用數(shù)學(xué)符號(hào)來(lái)解釋或表達(dá)函數(shù)圖象的最高點(diǎn)與最低點(diǎn),形成思維沖突,最后師生一起交流解決.】(三)歸納新知1、函數(shù)最大值的定義:一般地,設(shè)函數(shù)y=f(x)的定義域?yàn)镮,如果存在實(shí)數(shù)M滿足:(1)對(duì)于任意的xI,都有f(x)M;(2)存在x0I,使得f(x0)=M. 那么,我們稱(chēng)M是函數(shù)y=f(x)的最大值,記為ymaxf(x0).2、思考并類(lèi)比函數(shù)的最大值的定義,給出函數(shù)最小

5、值的定義一般地,設(shè)函數(shù)y=f(x)的定義域?yàn)镮,如果存在實(shí)數(shù)M滿足:(1)對(duì)于任意的xI,都有f(x)M;(2)存在x0I,使得f(x0)=M. 那么,我們稱(chēng)M是函數(shù)y=f(x)的最小值,記為yminf(x0).【設(shè)計(jì)意圖:在畫(huà)和觀查函數(shù)圖象、用數(shù)學(xué)符號(hào)來(lái)解釋或表達(dá)函數(shù)圖象的最高點(diǎn)與最低點(diǎn)的基礎(chǔ)上,歸納出函數(shù)最大值的定義及其數(shù)學(xué)符號(hào)的表達(dá).繼續(xù)引導(dǎo)學(xué)生思考、類(lèi)比,自己歸納出函數(shù)的最小值的定義及其數(shù)學(xué)符號(hào)的表達(dá).】三、反思提升(一)函數(shù)最大(最小)值的定義及其幾何意義(二)函數(shù)最大(最小)值與函數(shù)定義域及值域的關(guān)系.(1)函數(shù)的定義域?yàn)殚_(kāi)區(qū)間或閉區(qū)間對(duì)函數(shù)最大(最小)值的影響(2)函數(shù)不一定有最

6、大(最小)值(3)函數(shù)的最大(最小)值是唯一的,但其對(duì)應(yīng)的自變量的值不一定是唯一的.(三)數(shù)學(xué)方法與思想函數(shù)最大(最小)值與函數(shù)圖象及其單調(diào)性的關(guān)系中充分體現(xiàn)數(shù)形結(jié)合的思想,函數(shù)最大(最小)值的定義中體現(xiàn)類(lèi)比的方法,分類(lèi)討論的方法.【設(shè)計(jì)意圖:經(jīng)歷問(wèn)題引入和新知探究后,師生對(duì)函數(shù)的最大(最小)值的定義及其幾何意義有了初步認(rèn)識(shí),在此基礎(chǔ)上進(jìn)行探究過(guò)程和運(yùn)用到的數(shù)學(xué)思想方法進(jìn)行反思提升,強(qiáng)調(diào)函數(shù)最大(最小)值與函數(shù)圖象、函數(shù)單調(diào)性、函數(shù)定義域和函數(shù)值域的內(nèi)在關(guān)系.】四、反饋例練(一)基礎(chǔ)例練例1 “菊花”煙花是最壯觀的煙花之一.制造時(shí)一般是期望在它達(dá)到最高點(diǎn)時(shí)爆裂.如果煙花在距地面高度h m與時(shí)間

7、t s的之間的關(guān)系為h(t)=4.9t2+14.7t+18,那么煙花沖出后什么時(shí)候是它爆裂的最佳時(shí)刻?這時(shí)距地面的高度是多少(精確到1 m)?解:作出函數(shù)h(t)=4.9t2+14.7t+18的圖象.顯然,函數(shù)圖象的頂點(diǎn)就是煙花上升的最高點(diǎn),頂點(diǎn)的橫坐標(biāo)就是煙花爆裂的最佳時(shí)刻,縱坐標(biāo)就是這時(shí)距地面的高度.由二次函數(shù)的知識(shí),對(duì)于函數(shù)h(t)=4.9t2+14.7t+18,我們有:當(dāng)t=1.5時(shí),函數(shù)有最大值,h=29.于是,煙花沖出后1.5 s是它爆裂的最佳時(shí)刻,這時(shí)距地面的高度約為29 m.【例2】 求函數(shù)y=在區(qū)間2,6上的最大值和最小值.分析:由函數(shù)y=(x2,6)的圖象可知,函數(shù)y=在區(qū)

8、間2,6上遞減.所以,函數(shù)y=在區(qū)間2,6的兩個(gè)端點(diǎn)上分別取得最大值和最小值.解:設(shè)x1、x2是區(qū)間2,6上的任意兩個(gè)實(shí)數(shù),且x1x2,則f(x1)f(x2)=.由2x1x26,得x2x10,(x11)(x21)0,f(x1)f(x2)0,即f(x1)f(x2).所以,函數(shù)y=是區(qū)間2,6上的減函數(shù).因此,函數(shù)y=在區(qū)間2,6的兩個(gè)端點(diǎn)上分別取得最大(最小)值,即在x=2時(shí)取得最大值,最大值是2,在x=6時(shí)取得最小值,最小值是0.4.(二)鞏固例練例1:求下列函數(shù)的最值(1);(2).例2:已知函數(shù),(1)證明當(dāng)0<x<1時(shí),函數(shù)f(x)是減函數(shù);當(dāng)x1時(shí),函數(shù)f(x)是增函數(shù).(

9、2)求函數(shù)的最小值.分析:(1)利用定義法證明函數(shù)的單調(diào)性;(2)應(yīng)用函數(shù)的單調(diào)性得函數(shù)的最小值.(1)解:任取x1、x2(0,+)且x1x2,則f(x1)-f(x2)=()-()=(x1-x2)+=,x1x2,x1x2<0,x1x2>0.當(dāng)0x1x21時(shí),x1x2-1<0,f(x1)-f(x2)0.f(x1)f(x2),即當(dāng)0<x<1時(shí),函數(shù)f(x)是減函數(shù).當(dāng)1x1x2時(shí),x1x2-1>0, f(x1)-f(x2)0.f(x1)f(x2),即當(dāng)x1時(shí), 函數(shù)f(x)是增函數(shù).(2)由(1)得當(dāng)x=1時(shí),函數(shù)取最小值.又f(1)=2,則函數(shù)取最小值是2.點(diǎn)

10、評(píng):本題主要考查函數(shù)的單調(diào)性和最值.定義法證明函數(shù)的單調(diào)性的步驟:作差、判號(hào)、結(jié)論;三個(gè)步驟缺一不可.利用函數(shù)的單調(diào)性求函數(shù)的最值的步驟:先判斷函數(shù)的單調(diào)性,再利用其單調(diào)性求最值;當(dāng)然對(duì)于簡(jiǎn)單的函數(shù),也可以畫(huà)出其函數(shù)圖象,依據(jù)函數(shù)最值的幾何意義,借助圖象寫(xiě)出最值.【設(shè)計(jì)意圖:先安排教材上的兩個(gè)例題,師生一起例練,可以先讓學(xué)生思考練習(xí),老師適當(dāng)點(diǎn)撥講評(píng),然后安排兩個(gè)鞏固例練,以二次函數(shù)的背景,簡(jiǎn)單的含參數(shù)的二次函數(shù)動(dòng)區(qū)間和動(dòng)軸的最大最小值問(wèn)題,以及再一次鞏固“雙鉤”函數(shù)的單調(diào)性證明,然后利用單調(diào)性求函數(shù)的最大最小值.】五、課后作業(yè) 1、教科書(shū)P32 5、P39 A 5、B 1、22、校本教輔資料相應(yīng)練習(xí)【教學(xué)設(shè)計(jì)感悟】本節(jié)課看似簡(jiǎn)單,但為了達(dá)到本節(jié)課的教學(xué)目標(biāo),突出重點(diǎn),突破難點(diǎn).在探索概念階段,讓學(xué)生經(jīng)歷從直觀到抽象、從特殊到一般、從感性到理性的知過(guò)程,完成對(duì)函數(shù)最大(最小)值定義的認(rèn)識(shí),使得學(xué)生對(duì)概念的認(rèn)識(shí)不斷深入.在應(yīng)用概念階段,通

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論