復(fù)數(shù)與拉氏變換_第1頁
復(fù)數(shù)與拉氏變換_第2頁
復(fù)數(shù)與拉氏變換_第3頁
復(fù)數(shù)與拉氏變換_第4頁
復(fù)數(shù)與拉氏變換_第5頁
已閱讀5頁,還剩44頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、 ejx=cos x+jsin x (此時(shí)z的模r=1)其中r=|z|是z的模, q =arg z是z的輻角. v復(fù)數(shù)及其指數(shù)形式 復(fù)數(shù)z可以表示為Z = r (cosq+jsinq ) = rejq ,v歐拉公式 z=x+jyv三角函數(shù)與復(fù)變量指數(shù)函數(shù)之間的聯(lián)系 因?yàn)?ejx =cos x+j sin x, e-jx=cos x-j sin x, 所以 ejx+e-jx=2cos x, ex-e-jx=2jsin x. 因此v復(fù)變量指數(shù)函數(shù)的性質(zhì)特殊地, 有 ex+jy = exej y = ex(cos y+jsin y). )(21cosjxjxeex-+=, )(21sinjxjxee

2、jx-=. 2121zzzzeee=+. v復(fù)數(shù)項(xiàng)級數(shù) 設(shè)有復(fù)數(shù)項(xiàng)級數(shù)(un+ivn), 其中un, vn(n=1, 2, 3, )為實(shí)常數(shù)或?qū)嵑瘮?shù). 如果實(shí)部所成的級數(shù)un收斂于和u, 并且虛部所成的級數(shù)vn收斂于和v, 就說復(fù)數(shù)項(xiàng)級數(shù)收斂且和為u+iv. 如果級(un+ivn)的各項(xiàng)的模所構(gòu)成的級數(shù)|un+ivn|收斂, 則稱級數(shù)(un+ivn)絕對收斂. v 絕對收斂v復(fù)變量指數(shù)函數(shù) 考察復(fù)數(shù)項(xiàng)級數(shù) 可以證明此級數(shù)在復(fù)平面上是絕對收斂的, 在x軸上它表示指數(shù)函數(shù)ex, 在復(fù)平面上我們用它來定義復(fù)變量指數(shù)函數(shù), 記為ez . 即 !1 ! 2112 + +nznzz. !1 ! 2112

3、+ +=nzznzze. v歐拉公式 當(dāng)x=0時(shí), z=iy , =cos y+jsin y. 于是 這就是歐拉公式. 把y換成x得 eix=cos x+jsin x, v復(fù)變量指數(shù)函數(shù) !1 ! 2112 + +=nzznzze. )(!1 )(! 2112 + +=niyiyniyiye -+-+= ! 51! 41! 31! 2115432yiyyiyiy) ! 51! 31() ! 41! 211 (5342 -+-+ -+-=yyyiyyAppendix Lesson - Laplace TransformsLaplace,Pierre(1749-1827) Sources: htt

4、p:/ http:/ physicist and mathematician who put the final capstone on mathematical astronomy by summarizing and extending the work of his predecessors in his five volume Mcanique Cleste (Celestial Mechanics) (1799-1825). This work was important because it translated the geometrical study of mechanics

5、 used by Newton to one based on calculus, known as physical mechanics. Laplace also systematized and elaborated probability theory in Essai Philosophique sur les Probabilits (Philosophical Essay on Probability, 1814). He was the first to publish the value of the Gaussian integral, . He studied the L

6、aplace transform, although Heaviside developed the techniques fully. He proposed that the solar system had formed from a rotating solar nebula with rings breaking off and forming the planets. He discussed this theory in Exposition de systme du monde (1796). He pointed out that sound travels adiabati

7、cally, accounting for Newtons too small value. Laplace formulated the mathematical theory of interparticulate forces which could be applied to mechanical, thermal, and optical phenomena. This theory was replaced in the 1820s, but its emphasis on a unified physical view was important. With Lavoisier,

8、 whose caloric theory he subscribed to, he determined specific heats for many substances using a calorimeter of his own design. Laplace borrowed the potential concept from Lagrange, but brought it to new heights. He invented gravitational potential and showed it obeyed Laplaces equation in empty spa

9、ce. Laplace believed the universe to be completely deterministic. The Laplace Transform of a function, f(t), is defined as;-=0)()()(dtetfsFtfLstWhat is the Laplace Transform? Let f(t) be a given function that is defined for all t 0. We can transform f(t) in to a new function, F(s), via:What is the I

10、nverse Laplace Transform? Let F(s) be a Laplace transform of a function f(t). We can get f(t) by inverse Laplace Transform , via:.and we can transform it back too!The Inverse Laplace Transform is defined by+-=jjtsdsesFjtfsFL )(21)()(1Why the transform?A method to solve differential equations and cor

11、responding initial and boundary value problems, particularly useful when driving forces are discontinuous, impulsive, or a complicated periodic/aperiodic function.Transform the subsidiary equations solution toobtain the solutionof the given problemGiven thehard problem!Convert it intothe subsidiary

12、equation (Simple Problem!)Solve thesubsidiary equation (Purely algebraic!)1)0(, 245=+yydtdy -000121nnnnnnffsfssFsdtfd 2514sY sY ss-+=nSolution: First, take L of both sidesRearrange,Take L-1, 15254sy tss-+=+LFrom Table :tey8 . 05 . 05 . 0) t (-+= -000121nnnnnnffsfssFsdtfd 414 62 51 2 2+=+-+-ssssYsYss

13、sYsAn important point :)()(sFtfThe above is a statement that f(t) and F(s) are transform pairs. What this means is that for each f(t) there is a unique F(s) and for each F(s) there is a unique f(t). If we can remember the Pair relationships between approximately 10 of the Laplace transform pairs we

14、can go a long way.The Laplace TransformBuilding transform pairs:eL(+-=etasstatatdtedteetueL0)(0)(asasetueLstat+ += =+ +- -= = - - -1)()(|0astueat+-1)( A transform pairThe Laplace TransformBuilding transform pairs:-=0)(dttettuLst-=000|vduuvudvu = tdv = e-stdt21)(sttuA transform pairThe Laplace Transf

15、ormBuilding transform pairs:22011212)()cos(wssjwsjwsdteeewtLstjwtjwt+=+-=+=-22)()cos(wsstuwt+A transform pairThe Laplace TransformTime Shift-+-=+=-=-=-00)()()(,.,0,)()()(dxexfedxexfSoxtasandxatAsaxtanddtdxthenatxLeteatfatuatfLsxasaxsast)()()(sFeatuatfLas-=-The Laplace TransformFrequency Shift+-+=0)(

16、0)()()()(asFdtetfdtetfetfeLtasstatat)()(asFtfeLat+=-The Laplace TransformExample: Using Frequency ShiftFind the Le-atcos(wt)In this case, f(t) = cos(wt) so,2222)()()()(wasasasFandwsssF+=+=22)()()()cos(wasaswteLat+=-The Laplace TransformTime Integration:The property is:ststtsttesvdtedvanddttfdudxxfuL

17、etpartsbyIntegratedtedxxfdttfL-= 1,)(,)(:)()(0000The Laplace TransformTime Integration:Making these substitutions and carrying outThe integration shows that)(1)(1)(00sFsdtetfsdttfLst=-The Laplace TransformTime Differentiation:If the Lf(t) = F(s), we want to show:)0()()(fssFdttdfL-=Integrate by parts

18、:)(),()(,tfvsotdfdtdttdfdvanddtsedueustst= = = =- -= = =- - -The Laplace TransformTime Differentiation:Making the previous substitutions gives,-+-=-=000)()0(0)()(|dtetfsfdtsetfetfdtdfLstststSo we have shown:)0()()(fssFdttdfL-=The Laplace TransformFinal Value Theorem:If the function f(t) and its firs

19、t derivative are Laplace transformable and f(t)has the Laplace transform F(s), and the exists, then)(limssF s)()(lim)(lim = = =ftfssF0s tAgain, the utility of this theorem lies in not having to take the inverseof F(s) in order to find out the final value of f(t) in the time domain. This is particula

20、rly useful in circuits and systems.Final Value TheoremThe Laplace TransformFinal Value Theorem:Example:Given: ttesFnotesssFt3cos)(3)2(3)2()(212222- -= =+ + +- -+ += =- -Find )( f. 03)2(3)2(lim)(lim)(2222= =+ + +- -+ += = = sssssFf0s0sThe Laplace TransformInitial Value Theorem:If the function f(t) an

21、d its first derivative are Laplace transformable and f(t)Has the Laplace transform F(s), and the exists, then)(limssF0)0()(lim)(lim = = =tsftfssFThe utility of this theorem lies in not having to take the inverse of F(s) in order to find out the initial condition in the time domain. This is particula

22、rly useful in circuits and systems. sInitial Value TheoremThe Laplace TransformInitial ValueTheorem:Example:Given;225)1()2()(+ + + += =sssFFind f(0)1)26(22lim25122lim5)1()2(lim)(lim)0(22222222222= =+ + + += = + + + + += =+ + + += = =ssssssssssssssssssFf s s s s=-00010)(tttttt1t0(t)t0 The Laplace tra

23、nsform of a unit impulse:Pictorially, the unit impulse appears as follows:0t0f(t) (t t0)Mathematically: (t t0) = 0 t 0*note01)(000=-+- dttttt=-0000)(0)()(tttftttttff(t)t0t0f(t) (t-t0) The Laplace transform of a unit impulse:An important property of the unit impulse is a sifting or sampling property.

24、 The following is an important.=-21201020100,0)()()(ttttttttttfdttttf =0100)(tttu1t0u(t)The Laplace TransformLaplace Transform of the unit step.*notes|0011)(-=ststesdtetuLstuL1)(=The Laplace Transform of a unit step is:s1=-atatatu10)(1t0a1t0+Tu(t-) - u(t- -T) The Laplace transform of a unit impulse:

25、In particular, if we let f(t) = (t) and take the Laplace1)()(00=-sstedtettL 22)(wss+22)(wsw+22wsw+22wss+1tntate-s121s1!+nsn)(1as +)cos(wt)sin(wt)cos(wteat-)sin(wteat-)(tf)(sF)(tf)(sFT1s1teT421-ses-1(t)F(s)(t)1u(t) a constants1e-atas +1t21st e-at21as +)()()()()()(),()(sGsFtgtfLsGtgLsFtfL+=+=)()()()(-

26、=sFtfeLsFtfLt)()(00sFettfLst-=-)(1)(csFcctfL=)() 1()()0(.)0()0()()()()()()1()1(21)(sFtftLffsfssFstfLsFtfLnnnnnnnn-=-=-wDerivativessFtfLsdfLt)()(1)(0=wIntegralwConvolution)()()()()()(),()(0sHsFdthfLhfLsHthLsFtfLt=-=TheoremProperty(t)F(s)1ScalingA (t)A F(s)2Linearity1(t) 2(t)F1(s) F2(s)3Time Scaling(a

27、t)01aasaF F4Time Shifting(t-t0) u(t-t0)e-st0 F(s) t006Frequency Shiftinge-at (t)F(s+a)9Time DomainDifferentiationdttfd)(s F(s) - (0)7Frequency DomainDifferentiationt (t)dssd)(F F-10Time DomainIntegrationtdf0)()(1ssF F11Convolution-tdtff021)()(F1(s) F2(s) tuttueetfjsjssFBABABAsBjBsAjAsjsBjsAsFjssssFtjtj cos 212121212101:numerators two theEquating :(poles)r denominatoin Roots0002020000020200

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論