2022屆安徽省池州市東至高三下學(xué)期聯(lián)考數(shù)學(xué)試題含解析_第1頁
2022屆安徽省池州市東至高三下學(xué)期聯(lián)考數(shù)學(xué)試題含解析_第2頁
2022屆安徽省池州市東至高三下學(xué)期聯(lián)考數(shù)學(xué)試題含解析_第3頁
2022屆安徽省池州市東至高三下學(xué)期聯(lián)考數(shù)學(xué)試題含解析_第4頁
2022屆安徽省池州市東至高三下學(xué)期聯(lián)考數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

1、2021-2022高考數(shù)學(xué)模擬試卷考生須知:1全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1已知表示兩條不同的直線,表示兩個不同的平面,且則“”是“”的( )條件.A充分不必要B必要不充分C充要D既不充分也不必要2設(shè)為非零向量,則“”是“與共線”的( )A充分而不

2、必要條件B必要而不充分條件C充要條件D既不充分也不必要條件3若函數(shù)滿足,且,則的最小值是( )ABCD4已知橢圓的中心為原點,為的左焦點,為上一點,滿足且,則橢圓的方程為( )ABCD5將函數(shù)的圖象分別向右平移個單位長度與向左平移(0)個單位長度,若所得到的兩個圖象重合,則的最小值為( )ABCD6集合,則集合的真子集的個數(shù)是A1個B3個C4個D7個7已知等差數(shù)列的前項和為,若,則數(shù)列的公差為( )ABCD8在滿足,的實數(shù)對中,使得成立的正整數(shù)的最大值為( )A5B6C7D99將函數(shù)圖象上各點的橫坐標(biāo)伸長到原來的3倍(縱坐標(biāo)不變),再向右平移個單位長度,則所得函數(shù)圖象的一個對稱中心為( )AB

3、CD10已知等差數(shù)列an,則“a2a1”是“數(shù)列an為單調(diào)遞增數(shù)列”的( )A充分而不必要條件B必要而不充分條件C充分必要條件D既不充分也不必要條件11在中,則在方向上的投影是( )A4B3C-4D-312已知直線是曲線的切線,則( )A或1B或2C或D或1二、填空題:本題共4小題,每小題5分,共20分。13在一塊土地上種植某種農(nóng)作物,連續(xù)5年的產(chǎn)量(單位:噸)分別為9.4,9.7,9.8,10.3,10.8.則該農(nóng)作物的年平均產(chǎn)量是_噸.14如圖是一個算法偽代碼,則輸出的的值為_.15設(shè)函數(shù),若存在實數(shù)m,使得關(guān)于x的方程有4個不相等的實根,且這4個根的平方和存在最小值,則實數(shù)a的取值范圍是

4、_.16記Sk1k+2k+3k+nk,當(dāng)k1,2,3,時,觀察下列等式:S1n2n,S2n3n2n,S3n4n3n2,S5An6n5n4+Bn2,可以推測,AB_三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)金秋九月,丹桂飄香,某高校迎來了一大批優(yōu)秀的學(xué)生新生接待其實也是和社會溝通的一個平臺校團委、學(xué)生會從在校學(xué)生中隨機抽取了160名學(xué)生,對是否愿意投入到新生接待工作進行了問卷調(diào)查,統(tǒng)計數(shù)據(jù)如下:愿意不愿意男生6020女士4040(1)根據(jù)上表說明,能否有99%把握認(rèn)為愿意參加新生接待工作與性別有關(guān);(2)現(xiàn)從參與問卷調(diào)查且愿意參加新生接待工作的學(xué)生中,采用按性別

5、分層抽樣的方法,選取10人若從這10人中隨機選取3人到火車站迎接新生,設(shè)選取的3人中女生人數(shù)為,寫出的分布列,并求附:,其中0.050.010.0013.8416.63510.82818(12分)已知函數(shù),(1)證明:在區(qū)間單調(diào)遞減;(2)證明:對任意的有19(12分)已知向量,函數(shù)(1)求函數(shù)的最小正周期及單調(diào)遞增區(qū)間;(2)在中,三內(nèi)角的對邊分別為,已知函數(shù)的圖像經(jīng)過點,成等差數(shù)列,且,求a的值20(12分)已知在中,角,的對邊分別為,的面積為.(1)求證:;(2)若,求的值.21(12分)如圖所示,已知平面,為等邊三角形,為邊上的中點,且.()求證:面;()求證:平面平面;()求該幾何體

6、的體積22(10分)已知拋物線的焦點也是橢圓的一個焦點,與的公共弦的長為. (1)求的方程;(2)過點的直線與相交于、兩點,與相交于、兩點,且與同向,設(shè)在點處的切線與軸的交點為,證明:直線繞點旋轉(zhuǎn)時,總是鈍角三角形;(3)為上的動點,、為長軸的兩個端點,過點作的平行線交橢圓于點,過點作的平行線交橢圓于點,請問的面積是否為定值,并說明理由.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1B【解析】根據(jù)充分必要條件的概念進行判斷.【詳解】對于充分性:若,則可以平行,相交,異面,故充分性不成立;若,則可得,必要性成立.故選:B【點睛】本

7、題主要考查空間中線線,線面,面面的位置關(guān)系,以及充要條件的判斷,考查學(xué)生綜合運用知識的能力.解決充要條件判斷問題,關(guān)鍵是要弄清楚誰是條件,誰是結(jié)論.2A【解析】根據(jù)向量共線的性質(zhì)依次判斷充分性和必要性得到答案.【詳解】若,則與共線,且方向相同,充分性;當(dāng)與共線,方向相反時,故不必要.故選:.【點睛】本題考查了向量共線,充分不必要條件,意在考查學(xué)生的推斷能力.3A【解析】由推導(dǎo)出,且,將所求代數(shù)式變形為,利用基本不等式求得的取值范圍,再利用函數(shù)的單調(diào)性可得出其最小值.【詳解】函數(shù)滿足,即,即,則,由基本不等式得,當(dāng)且僅當(dāng)時,等號成立.,由于函數(shù)在區(qū)間上為增函數(shù),所以,當(dāng)時,取得最小值.故選:A.

8、【點睛】本題考查代數(shù)式最值的計算,涉及對數(shù)運算性質(zhì)、基本不等式以及函數(shù)單調(diào)性的應(yīng)用,考查計算能力,屬于中等題.4B【解析】由題意可得c=,設(shè)右焦點為F,由|OP|=|OF|=|OF|知,PFF=FPO,OFP=OPF,所以PFF+OFP=FPO+OPF,由PFF+OFP+FPO+OPF=180知,F(xiàn)PO+OPF=90,即PFPF在RtPFF中,由勾股定理,得|PF|=,由橢圓定義,得|PF|+|PF|=2a=4+8=12,從而a=6,得a2=36,于是 b2=a2c2=36=16,所以橢圓的方程為故選B點睛:橢圓的定義:到兩定點距離之和為常數(shù)的點的軌跡,當(dāng)和大于兩定點間的距離時,軌跡是橢圓,當(dāng)

9、和等于兩定點間的距離時,軌跡是線段(兩定點間的連線段),當(dāng)和小于兩定點間的距離時,軌跡不存在5B【解析】首先根據(jù)函數(shù)的圖象分別向左與向右平移m,n個單位長度后,所得的兩個圖像重合,那么,利用的最小正周期為,從而求得結(jié)果.【詳解】的最小正周期為,那么(),于是,于是當(dāng)時,最小值為,故選B.【點睛】該題考查的是有關(guān)三角函數(shù)的周期與函數(shù)圖象平移之間的關(guān)系,屬于簡單題目.6B【解析】由題意,結(jié)合集合,求得集合,得到集合中元素的個數(shù),即可求解,得到答案【詳解】由題意,集合, 則,所以集合的真子集的個數(shù)為個,故選B【點睛】本題主要考查了集合的運算和集合中真子集的個數(shù)個數(shù)的求解,其中作出集合的運算,得到集合

10、,再由真子集個數(shù)的公式作出計算是解答的關(guān)鍵,著重考查了推理與運算能力7D【解析】根據(jù)等差數(shù)列公式直接計算得到答案.【詳解】依題意,故,故,故,故選:D【點睛】本題考查了等差數(shù)列的計算,意在考查學(xué)生的計算能力.8A【解析】由題可知:,且可得,構(gòu)造函數(shù)求導(dǎo),通過導(dǎo)函數(shù)求出的單調(diào)性,結(jié)合圖像得出,即得出,從而得出的最大值.【詳解】因為,則,即整理得,令,設(shè),則,令,則,令,則,故在上單調(diào)遞增,在上單調(diào)遞減,則,因為,由題可知:時,則,所以,所以,當(dāng)無限接近時,滿足條件,所以,所以要使得故當(dāng)時,可有,故,即,所以:最大值為5.故選:A.【點睛】本題主要考查利用導(dǎo)數(shù)求函數(shù)單調(diào)性、極值和最值,以及運用構(gòu)造

11、函數(shù)法和放縮法,同時考查轉(zhuǎn)化思想和解題能力.9D【解析】先化簡函數(shù)解析式,再根據(jù)函數(shù)的圖象變換規(guī)律,可得所求函數(shù)的解析式為,再由正弦函數(shù)的對稱性得解.【詳解】,將函數(shù)圖象上各點的橫坐標(biāo)伸長到原來的3倍,所得函數(shù)的解析式為,再向右平移個單位長度,所得函數(shù)的解析式為,,可得函數(shù)圖象的一個對稱中心為,故選D.【點睛】三角函數(shù)的圖象與性質(zhì)是高考考查的熱點之一,經(jīng)??疾槎x域、值域、周期性、對稱性、奇偶性、單調(diào)性、最值等,其中公式運用及其變形能力、運算能力、方程思想等可以在這些問題中進行體現(xiàn),在復(fù)習(xí)時要注意基礎(chǔ)知識的理解與落實三角函數(shù)的性質(zhì)由函數(shù)的解析式確定,在解答三角函數(shù)性質(zhì)的綜合試題時要抓住函數(shù)解析

12、式這個關(guān)鍵,在函數(shù)解析式較為復(fù)雜時要注意使用三角恒等變換公式把函數(shù)解析式化為一個角的一個三角函數(shù)形式,然后利用正弦(余弦)函數(shù)的性質(zhì)求解10C【解析】試題分析:根據(jù)充分條件和必要條件的定義進行判斷即可解:在等差數(shù)列an中,若a2a1,則d0,即數(shù)列an為單調(diào)遞增數(shù)列,若數(shù)列an為單調(diào)遞增數(shù)列,則a2a1,成立,即“a2a1”是“數(shù)列an為單調(diào)遞增數(shù)列”充分必要條件,故選C考點:必要條件、充分條件與充要條件的判斷11D【解析】分析:根據(jù)平面向量的數(shù)量積可得,再結(jié)合圖形求出與方向上的投影即可.詳解:如圖所示:,又,在方向上的投影是:,故選D.點睛:本題考查了平面向量的數(shù)量積以及投影的應(yīng)用問題,也考

13、查了數(shù)形結(jié)合思想的應(yīng)用問題.12D【解析】求得直線的斜率,利用曲線的導(dǎo)數(shù),求得切點坐標(biāo),代入直線方程,求得的值.【詳解】直線的斜率為,對于,令,解得,故切點為,代入直線方程得,解得或1.故選:D【點睛】本小題主要考查根據(jù)切線方程求參數(shù),屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。1310【解析】根據(jù)已知數(shù)據(jù)直接計算即得.【詳解】由題得,.故答案為:10【點睛】本題考查求平均數(shù),是基礎(chǔ)題.145【解析】執(zhí)行循環(huán)結(jié)構(gòu)流程圖,即得結(jié)果.【詳解】執(zhí)行循環(huán)結(jié)構(gòu)流程圖得,結(jié)束循環(huán),輸出.【點睛】本題考查循環(huán)結(jié)構(gòu)流程圖,考查基本分析與運算能力,屬基礎(chǔ)題.15【解析】先確定關(guān)于x的方程當(dāng)a為何

14、值時有4個不相等的實根,再將這四個根的平方和表示出來,利用函數(shù)思想來判斷當(dāng)a為何值時這4個根的平方和存在最小值即可.【詳解】由題意,當(dāng)時,此時,此時函數(shù)在單調(diào)遞減,在單調(diào)遞增,方程最多2個不相等的實根,舍;當(dāng)時,函數(shù)圖象如下所示:從左到右方程,有4個不相等的實根,依次為,即,由圖可知,故,且,從而,令,顯然,要使該式在時有最小值,則對稱軸,解得.綜上所述,實數(shù)a的取值范圍是.【點睛】本題考查了函數(shù)和方程的知識,但需要一定的邏輯思維能力,屬于較難題.16【解析】觀察知各等式右邊各項的系數(shù)和為1,最高次項的系數(shù)為該項次數(shù)的倒數(shù),據(jù)此計算得到答案.【詳解】根據(jù)所給的已知等式得到:各等式右邊各項的系數(shù)

15、和為1,最高次項的系數(shù)為該項次數(shù)的倒數(shù),A,A1,解得B,所以AB故答案為:【點睛】本題考查了歸納推理,意在考查學(xué)生的推理能力.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(1)有99%把握認(rèn)為愿意參加新生接待工作與性別有關(guān);(2)詳見解析.【解析】(1)計算得到,由此可得結(jié)論;(2)根據(jù)分層抽樣原則可得男生和女生人數(shù),由超幾何分布概率公式可求得的所有可能取值所對應(yīng)的概率,由此得到分布列;根據(jù)數(shù)學(xué)期望計算公式計算可得期望.【詳解】(1)的觀測值,有的把握認(rèn)為愿意參加新生接待工作與性別有關(guān)(2)根據(jù)分層抽樣方法得:男生有人,女生有人,選取的人中,男生有人,女生有人則的可能取

16、值有,的分布列為:【點睛】本題考查獨立性檢驗、分層抽樣、超幾何分布的分布列和數(shù)學(xué)期望的求解;關(guān)鍵是能夠明確隨機變量服從于超幾何分布,進而利用超幾何分布概率公式求得隨機變量每個取值所對應(yīng)的概率.18(1)答案見解析(2)答案見解析【解析】(1)利用復(fù)合函數(shù)求導(dǎo)求出,利用導(dǎo)數(shù)與函數(shù)單調(diào)性之間的關(guān)系即可求解. (2)首先證,令,求導(dǎo)可得單調(diào)遞增,由即可證出;再令,再利用導(dǎo)數(shù)可得單調(diào)遞增,由即可證出.【詳解】(1)顯然時,故在單調(diào)遞減(2)首先證,令,則單調(diào)遞增,且,所以再令,所以單調(diào)遞增,即,【點睛】本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、利用導(dǎo)數(shù)證明不等式,解題的關(guān)鍵掌握復(fù)合函數(shù)求導(dǎo),屬于難題.19(

17、1),(2)【解析】(1)利用向量的數(shù)量積和二倍角公式化簡得,故可求其周期與單調(diào)性;(2)根據(jù)圖像過得到,故可求得的大小,再根據(jù)數(shù)量積得到的乘積,最后結(jié)合余弦定理和構(gòu)建關(guān)于的方程即可【詳解】(1),最小正周期:,由得,所以的單調(diào)遞增區(qū)間為;(2)由可得:,所以又因為成等差數(shù)列,所以而,20(1)證明見解析;(2).【解析】(1)利用,利用正弦定理,化簡即可證明(2)利用(1),得到當(dāng)時,得出,得出,然后可得【詳解】證明:(1)據(jù)題意,得,.又,.解:(2)由(1)求解知,.當(dāng)時,.又,.【點睛】本題考查正弦與余弦定理的應(yīng)用,屬于基礎(chǔ)題21()見解析; ()見解析; ().【解析】(I)取的中點

18、,連接,通過證明四邊形為平行四邊形,證得,由此證得平面.(II)利用,證得平面,從而得到平面,由此證得平面平面.(III)作交于點,易得面,利用棱錐的體積公式,計算出棱錐的體積.【詳解】()取的中點,連接,則,故四邊形為平行四邊形.故.又面,平面,所以面.()為等邊三角形,為中點,所以.又,所以面.又,故面,所以面平面.()幾何體是四棱錐,作交于點,即面,.【點睛】本小題主要考查線面平行的證明,考查面面垂直的證明,考查四棱錐體積的求法,考查空間想象能力,所以中檔題.22(1);(2)證明見解析;(3)是,理由見解析.【解析】(1)根據(jù)兩個曲線的焦點相同,得到,再根據(jù)與的公共弦長為得出,可求出和的值,進而可得出曲線的方程;(2)設(shè)點,根據(jù)導(dǎo)數(shù)的幾何意義得到曲線在點處的切線方程,求出點的坐標(biāo),利用向量的數(shù)量積得出,則問題得以證明;(3)設(shè)直線,直線,、,推導(dǎo)出以及,求出和,通過化簡計算可得出為定值,進而可得出結(jié)論.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論