2016年全國(guó)統(tǒng)一高考數(shù)學(xué)試卷(理科)(新課標(biāo)ⅱ)(含解析版)_第1頁(yè)
2016年全國(guó)統(tǒng)一高考數(shù)學(xué)試卷(理科)(新課標(biāo)ⅱ)(含解析版)_第2頁(yè)
2016年全國(guó)統(tǒng)一高考數(shù)學(xué)試卷(理科)(新課標(biāo)ⅱ)(含解析版)_第3頁(yè)
2016年全國(guó)統(tǒng)一高考數(shù)學(xué)試卷(理科)(新課標(biāo)ⅱ)(含解析版)_第4頁(yè)
2016年全國(guó)統(tǒng)一高考數(shù)學(xué)試卷(理科)(新課標(biāo)ⅱ)(含解析版)_第5頁(yè)
已閱讀5頁(yè),還剩40頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、2016年全國(guó)統(tǒng)一高考數(shù)學(xué)試卷(理科)(新課標(biāo))一、選擇題:本題共12小題,每小題5分,在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的1(5分)已知z=(m+3)+(m1)i在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在第四象限,則實(shí)數(shù)m的取值范圍是()A(3,1)B(1,3)C(1,+)D(,3)2(5分)已知集合A=1,2,3,B=x|(x+1)(x2)0,xZ,則AB等于()A1B1,2C0,1,2,3D1,0,1,2,33(5分)已知向量=(1,m),=(3,2),且(+),則m=()A8B6C6D84(5分)圓x2+y22x8y+13=0的圓心到直線ax+y1=0的距離為1,則a=()ABCD25(5分)

2、如圖,小明從街道的E處出發(fā),先到F處與小紅會(huì)合,再一起到位于G處的老年公寓參加志愿者活動(dòng),則小明到老年公寓可以選擇的最短路徑條數(shù)為()A24B18C12D96(5分)如圖是由圓柱與圓錐組合而成的幾何體的三視圖,則該幾何體的表面積為()A20B24C28D327(5分)若將函數(shù)y=2sin2x的圖象向左平移個(gè)單位長(zhǎng)度,則平移后的圖象的對(duì)稱軸為()Ax=(kZ)Bx=+(kZ)Cx=(kZ)Dx=+(kZ)8(5分)中國(guó)古代有計(jì)算多項(xiàng)式值的秦九韶算法,如圖是實(shí)現(xiàn)該算法的程序框圖執(zhí)行該程序框圖,若輸入的x=2,n=2,依次輸入的a為2,2,5,則輸出的s=()A7B12C17D349(5分)若cos

3、()=,則sin2=()ABCD10(5分)從區(qū)間0,1隨機(jī)抽取2n個(gè)數(shù)x1,x2,xn,y1,y2,yn構(gòu)成n個(gè)數(shù)對(duì)(x1,y1),(x2,y2)(xn,yn),其中兩數(shù)的平方和小于1的數(shù)對(duì)共有m個(gè),則用隨機(jī)模擬的方法得到的圓周率的近似值為()ABCD11(5分)已知F1,F(xiàn)2是雙曲線E:=1的左,右焦點(diǎn),點(diǎn)M在E上,MF1與x軸垂直,sinMF2F1=,則E的離心率為()ABCD212(5分)已知函數(shù)f(x)(xR)滿足f(x)=2f(x),若函數(shù)y=與y=f(x)圖象的交點(diǎn)為(x1,y1),(x2,y2),(xm,ym),則(xi+yi)=()A0BmC2mD4m二、填空題:本題共4小題

4、,每小題5分13(5分)ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,若cosA=,cosC=,a=1,則b= 14(5分),是兩個(gè)平面,m,n是兩條直線,有下列四個(gè)命題:如果mn,m,n,那么如果m,n,那么mn如果,m,那么m如果mn,那么m與所成的角和n與所成的角相等其中正確的命題是 (填序號(hào))15(5分)有三張卡片,分別寫(xiě)有1和2,1和3,2和3甲,乙,丙三人各取走一張卡片,甲看了乙的卡片后說(shuō):“我與乙的卡片上相同的數(shù)字不是2”,乙看了丙的卡片后說(shuō):“我與丙的卡片上相同的數(shù)字不是1”,丙說(shuō):“我的卡片上的數(shù)字之和不是5”,則甲的卡片上的數(shù)字是 16(5分)若直線y=kx+b是曲線y=l

5、nx+2的切線,也是曲線y=ln(x+1)的切線,則b= 三、解答題:解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟17(12分)Sn為等差數(shù)列an的前n項(xiàng)和,且a1=1,S7=28,記bn=lgan,其中x表示不超過(guò)x的最大整數(shù),如0.9=0,lg99=1()求b1,b11,b101;()求數(shù)列bn的前1000項(xiàng)和18(12分)某保險(xiǎn)的基本保費(fèi)為a(單位:元),繼續(xù)購(gòu)買該保險(xiǎn)的投保人成為續(xù)保人,續(xù)保人本年度的保費(fèi)與其上年度出險(xiǎn)次數(shù)的關(guān)聯(lián)如下:上年度出險(xiǎn)次數(shù)012345保費(fèi)0.85aa1.25a1.5a1.75a2a設(shè)該險(xiǎn)種一續(xù)保人一年內(nèi)出險(xiǎn)次數(shù)與相應(yīng)概率如下:一年內(nèi)出險(xiǎn)次數(shù)012345概率0.300

6、.150.200.200.100.05()求一續(xù)保人本年度的保費(fèi)高于基本保費(fèi)的概率;()若一續(xù)保人本年度的保費(fèi)高于基本保費(fèi),求其保費(fèi)比基本保費(fèi)高出60%的概率;()求續(xù)保人本年度的平均保費(fèi)與基本保費(fèi)的比值19(12分)如圖,菱形ABCD的對(duì)角線AC與BD交于點(diǎn)O,AB=5,AC=6,點(diǎn)E,F(xiàn)分別在AD,CD上,AE=CF=,EF交于BD于點(diǎn)H,將DEF沿EF折到DEF的位置,OD=()證明:DH平面ABCD;()求二面角BDAC的正弦值20(12分)已知橢圓E:+=1的焦點(diǎn)在x軸上,A是E的左頂點(diǎn),斜率為k(k0)的直線交E于A,M兩點(diǎn),點(diǎn)N在E上,MANA()當(dāng)t=4,|AM|=|AN|時(shí),

7、求AMN的面積;()當(dāng)2|AM|=|AN|時(shí),求k的取值范圍21(12分)()討論函數(shù)f(x)=ex的單調(diào)性,并證明當(dāng)x0時(shí),(x2)ex+x+20;()證明:當(dāng)a0,1)時(shí),函數(shù)g(x)=(x0)有最小值設(shè)g(x)的最小值為h(a),求函數(shù)h(a)的值域請(qǐng)考生在第2224題中任選一個(gè)題作答,如果多做,則按所做的第一題計(jì)分.選修4-1:幾何證明選講22(10分)如圖,在正方形ABCD中,E,G分別在邊DA,DC上(不與端點(diǎn)重合),且DE=DG,過(guò)D點(diǎn)作DFCE,垂足為F()證明:B,C,G,F(xiàn)四點(diǎn)共圓;()若AB=1,E為DA的中點(diǎn),求四邊形BCGF的面積選修4-4:坐標(biāo)系與參數(shù)方程23在直角

8、坐標(biāo)系xOy中,圓C的方程為(x+6)2+y2=25()以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,求C的極坐標(biāo)方程;()直線l的參數(shù)方程是(t為參數(shù)),l與C交與A,B兩點(diǎn),|AB|=,求l的斜率選修4-5:不等式選講24已知函數(shù)f(x)=|x|+|x+|,M為不等式f(x)2的解集()求M;()證明:當(dāng)a,bM時(shí),|a+b|1+ab|2016年全國(guó)統(tǒng)一高考數(shù)學(xué)試卷(理科)(新課標(biāo))參考答案與試題解析一、選擇題:本題共12小題,每小題5分,在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的1(5分)已知z=(m+3)+(m1)i在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在第四象限,則實(shí)數(shù)m的取值范圍是()A(3

9、,1)B(1,3)C(1,+)D(,3)【考點(diǎn)】A4:復(fù)數(shù)的代數(shù)表示法及其幾何意義菁優(yōu)網(wǎng)版權(quán)所有【專題】11:計(jì)算題;29:規(guī)律型;35:轉(zhuǎn)化思想;5N:數(shù)系的擴(kuò)充和復(fù)數(shù)【分析】利用復(fù)數(shù)對(duì)應(yīng)點(diǎn)所在象限,列出不等式組求解即可【解答】解:z=(m+3)+(m1)i在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在第四象限,可得:,解得3m1故選:A【點(diǎn)評(píng)】本題考查復(fù)數(shù)的幾何意義,考查計(jì)算能力2(5分)已知集合A=1,2,3,B=x|(x+1)(x2)0,xZ,則AB等于()A1B1,2C0,1,2,3D1,0,1,2,3【考點(diǎn)】1D:并集及其運(yùn)算菁優(yōu)網(wǎng)版權(quán)所有【專題】11:計(jì)算題;35:轉(zhuǎn)化思想;4O:定義法;5J:集合【分析

10、】先求出集合A,B,由此利用并集的定義能求出AB的值【解答】解:集合A=1,2,3,B=x|(x+1)(x2)0,xZ=0,1,AB=0,1,2,3故選:C【點(diǎn)評(píng)】本題考查并集的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意并集定義的合理運(yùn)用3(5分)已知向量=(1,m),=(3,2),且(+),則m=()A8B6C6D8【考點(diǎn)】9H:平面向量的基本定理菁優(yōu)網(wǎng)版權(quán)所有【專題】11:計(jì)算題;35:轉(zhuǎn)化思想;4R:轉(zhuǎn)化法;5A:平面向量及應(yīng)用【分析】求出向量+的坐標(biāo),根據(jù)向量垂直的充要條件,構(gòu)造關(guān)于m的方程,解得答案【解答】解:向量=(1,m),=(3,2),+=(4,m2),又(+),122(m2)=0

11、,解得:m=8,故選:D【點(diǎn)評(píng)】本題考查的知識(shí)點(diǎn)是向量垂直的充要條件,難度不大,屬于基礎(chǔ)題4(5分)圓x2+y22x8y+13=0的圓心到直線ax+y1=0的距離為1,則a=()ABCD2【考點(diǎn)】IT:點(diǎn)到直線的距離公式;J9:直線與圓的位置關(guān)系菁優(yōu)網(wǎng)版權(quán)所有【專題】35:轉(zhuǎn)化思想;4R:轉(zhuǎn)化法;5B:直線與圓【分析】求出圓心坐標(biāo),代入點(diǎn)到直線距離方程,解得答案【解答】解:圓x2+y22x8y+13=0的圓心坐標(biāo)為:(1,4),故圓心到直線ax+y1=0的距離d=1,解得:a=,故選:A【點(diǎn)評(píng)】本題考查的知識(shí)點(diǎn)是圓的一般方程,點(diǎn)到直線的距離公式,難度中檔5(5分)如圖,小明從街道的E處出發(fā),先

12、到F處與小紅會(huì)合,再一起到位于G處的老年公寓參加志愿者活動(dòng),則小明到老年公寓可以選擇的最短路徑條數(shù)為()A24B18C12D9【考點(diǎn)】D2:分步乘法計(jì)數(shù)原理;D9:排列、組合及簡(jiǎn)單計(jì)數(shù)問(wèn)題菁優(yōu)網(wǎng)版權(quán)所有【專題】12:應(yīng)用題;34:方程思想;49:綜合法;5O:排列組合【分析】從E到F最短的走法,無(wú)論怎樣走,一定包括4段,其中2段方向相同,另2段方向相同,每種最短走法,即是從4段中選出2段走東向的,選出2段走北向的,由組合數(shù)可得最短的走法,同理從F到G,最短的走法,有C31=3種走法,利用乘法原理可得結(jié)論【解答】解:從E到F,每條東西向的街道被分成2段,每條南北向的街道被分成2段,從E到F最短的

13、走法,無(wú)論怎樣走,一定包括4段,其中2段方向相同,另2段方向相同,每種最短走法,即是從4段中選出2段走東向的,選出2段走北向的,故共有C42C22=6種走法同理從F到G,最短的走法,有C31C22=3種走法小明到老年公寓可以選擇的最短路徑條數(shù)為63=18種走法故選:B【點(diǎn)評(píng)】本題考查排列組合的簡(jiǎn)單應(yīng)用,得出組成矩形的條件和最短走法是解決問(wèn)題的關(guān)鍵,屬基礎(chǔ)題6(5分)如圖是由圓柱與圓錐組合而成的幾何體的三視圖,則該幾何體的表面積為()A20B24C28D32【考點(diǎn)】L!:由三視圖求面積、體積菁優(yōu)網(wǎng)版權(quán)所有【專題】15:綜合題;35:轉(zhuǎn)化思想;49:綜合法;5F:空間位置關(guān)系與距離【分析】空間幾何

14、體是一個(gè)組合體,上面是一個(gè)圓錐,圓錐的底面直徑是4,圓錐的高是2,在軸截面中圓錐的母線長(zhǎng)使用勾股定理做出的,寫(xiě)出表面積,下面是一個(gè)圓柱,圓柱的底面直徑是4,圓柱的高是4,做出圓柱的表面積,注意不包括重合的平面【解答】解:由三視圖知,空間幾何體是一個(gè)組合體,上面是一個(gè)圓錐,圓錐的底面直徑是4,圓錐的高是2,在軸截面中圓錐的母線長(zhǎng)是=4,圓錐的側(cè)面積是24=8,下面是一個(gè)圓柱,圓柱的底面直徑是4,圓柱的高是4,圓柱表現(xiàn)出來(lái)的表面積是22+224=20空間組合體的表面積是28,故選:C【點(diǎn)評(píng)】本題考查由三視圖求表面積,本題的圖形結(jié)構(gòu)比較簡(jiǎn)單,易錯(cuò)點(diǎn)可能是兩個(gè)幾何體重疊的部分忘記去掉,求表面積就有這樣

15、的弊端7(5分)若將函數(shù)y=2sin2x的圖象向左平移個(gè)單位長(zhǎng)度,則平移后的圖象的對(duì)稱軸為()Ax=(kZ)Bx=+(kZ)Cx=(kZ)Dx=+(kZ)【考點(diǎn)】H6:正弦函數(shù)的奇偶性和對(duì)稱性;HJ:函數(shù)y=Asin(x+)的圖象變換菁優(yōu)網(wǎng)版權(quán)所有【專題】35:轉(zhuǎn)化思想;49:綜合法;57:三角函數(shù)的圖像與性質(zhì)【分析】利用函數(shù)y=Asin(x+)(A0,0)的圖象的變換及正弦函數(shù)的對(duì)稱性可得答案【解答】解:將函數(shù)y=2sin2x的圖象向左平移個(gè)單位長(zhǎng)度,得到y(tǒng)=2sin2(x+)=2sin(2x+),由2x+=k+(kZ)得:x=+(kZ),即平移后的圖象的對(duì)稱軸方程為x=+(kZ),故選:B

16、【點(diǎn)評(píng)】本題考查函數(shù)y=Asin(x+)(A0,0)的圖象的變換規(guī)律的應(yīng)用及正弦函數(shù)的對(duì)稱性質(zhì),屬于中檔題8(5分)中國(guó)古代有計(jì)算多項(xiàng)式值的秦九韶算法,如圖是實(shí)現(xiàn)該算法的程序框圖執(zhí)行該程序框圖,若輸入的x=2,n=2,依次輸入的a為2,2,5,則輸出的s=()A7B12C17D34【考點(diǎn)】EF:程序框圖菁優(yōu)網(wǎng)版權(quán)所有【專題】11:計(jì)算題;28:操作型;5K:算法和程序框圖【分析】根據(jù)已知的程序框圖可得,該程序的功能是利用循環(huán)結(jié)構(gòu)計(jì)算并輸出變量S的值,模擬程序的運(yùn)行過(guò)程,可得答案【解答】解:輸入的x=2,n=2,當(dāng)輸入的a為2時(shí),S=2,k=1,不滿足退出循環(huán)的條件;當(dāng)再次輸入的a為2時(shí),S=6

17、,k=2,不滿足退出循環(huán)的條件;當(dāng)輸入的a為5時(shí),S=17,k=3,滿足退出循環(huán)的條件;故輸出的S值為17,故選:C【點(diǎn)評(píng)】本題考查的知識(shí)點(diǎn)是程序框圖,當(dāng)循環(huán)次數(shù)不多,或有規(guī)律可循時(shí),可采用模擬程序法進(jìn)行解答9(5分)若cos()=,則sin2=()ABCD【考點(diǎn)】GF:三角函數(shù)的恒等變換及化簡(jiǎn)求值菁優(yōu)網(wǎng)版權(quán)所有【專題】36:整體思想;4R:轉(zhuǎn)化法;56:三角函數(shù)的求值【分析】法1:利用誘導(dǎo)公式化sin2=cos(2),再利用二倍角的余弦可得答案法:利用余弦二倍角公式將左邊展開(kāi),可以得sin+cos的值,再平方,即得sin2的值【解答】解:法1:cos()=,sin2=cos(2)=cos2(

18、)=2cos2()1=21=,法2:cos()=(sin+cos)=,(1+sin2)=,sin2=21=,故選:D【點(diǎn)評(píng)】本題考查三角函數(shù)的恒等變換及化簡(jiǎn)求值,熟練掌握誘導(dǎo)公式化與二倍角的余弦是關(guān)鍵,屬于中檔題10(5分)從區(qū)間0,1隨機(jī)抽取2n個(gè)數(shù)x1,x2,xn,y1,y2,yn構(gòu)成n個(gè)數(shù)對(duì)(x1,y1),(x2,y2)(xn,yn),其中兩數(shù)的平方和小于1的數(shù)對(duì)共有m個(gè),則用隨機(jī)模擬的方法得到的圓周率的近似值為()ABCD【考點(diǎn)】CF:幾何概型菁優(yōu)網(wǎng)版權(quán)所有【專題】11:計(jì)算題;34:方程思想;49:綜合法;5I:概率與統(tǒng)計(jì)【分析】以面積為測(cè)度,建立方程,即可求出圓周率的近似值【解答】

19、解:由題意,兩數(shù)的平方和小于1,對(duì)應(yīng)的區(qū)域的面積為12,從區(qū)間0,1】隨機(jī)抽取2n個(gè)數(shù)x1,x2,xn,y1,y2,yn,構(gòu)成n個(gè)數(shù)對(duì)(x1,y1),(x2,y2),(xn,yn),對(duì)應(yīng)的區(qū)域的面積為12=故選:C【點(diǎn)評(píng)】古典概型和幾何概型是我們學(xué)習(xí)的兩大概型,古典概型要求能夠列舉出所有事件和發(fā)生事件的個(gè)數(shù),而不能列舉的就是幾何概型,幾何概型的概率的值是通過(guò)長(zhǎng)度、面積和體積的比值得到11(5分)已知F1,F(xiàn)2是雙曲線E:=1的左,右焦點(diǎn),點(diǎn)M在E上,MF1與x軸垂直,sinMF2F1=,則E的離心率為()ABCD2【考點(diǎn)】KC:雙曲線的性質(zhì)菁優(yōu)網(wǎng)版權(quán)所有【專題】31:數(shù)形結(jié)合;44:數(shù)形結(jié)合法

20、;5D:圓錐曲線的定義、性質(zhì)與方程【分析】由條件MF1MF2,sinMF2F1=,列出關(guān)系式,從而可求離心率【解答】解:由題意,M為雙曲線左支上的點(diǎn),則丨MF1丨=,丨MF2丨=,sinMF2F1=,=,可得:2b4=a2c2,即b2=ac,又c2=a2+b2,可得e2e=0,e1,解得e=故選:A【點(diǎn)評(píng)】本題考查雙曲線的定義及離心率的求解,關(guān)鍵是找出幾何量之間的關(guān)系,考查數(shù)形結(jié)合思想,屬于中檔題12(5分)已知函數(shù)f(x)(xR)滿足f(x)=2f(x),若函數(shù)y=與y=f(x)圖象的交點(diǎn)為(x1,y1),(x2,y2),(xm,ym),則(xi+yi)=()A0BmC2mD4m【考點(diǎn)】3P

21、:抽象函數(shù)及其應(yīng)用菁優(yōu)網(wǎng)版權(quán)所有【專題】33:函數(shù)思想;48:分析法;51:函數(shù)的性質(zhì)及應(yīng)用【分析】由條件可得f(x)+f(x)=2,即有f(x)關(guān)于點(diǎn)(0,1)對(duì)稱,又函數(shù)y=,即y=1+的圖象關(guān)于點(diǎn)(0,1)對(duì)稱,即有(x1,y1)為交點(diǎn),即有(x1,2y1)也為交點(diǎn),計(jì)算即可得到所求和【解答】解:函數(shù)f(x)(xR)滿足f(x)=2f(x),即為f(x)+f(x)=2,可得f(x)關(guān)于點(diǎn)(0,1)對(duì)稱,函數(shù)y=,即y=1+的圖象關(guān)于點(diǎn)(0,1)對(duì)稱,即有(x1,y1)為交點(diǎn),即有(x1,2y1)也為交點(diǎn),(x2,y2)為交點(diǎn),即有(x2,2y2)也為交點(diǎn),則有(xi+yi)=(x1+y1

22、)+(x2+y2)+(xm+ym)=(x1+y1)+(x1+2y1)+(x2+y2)+(x2+2y2)+(xm+ym)+(xm+2ym)=m故選:B【點(diǎn)評(píng)】本題考查抽象函數(shù)的運(yùn)用:求和,考查函數(shù)的對(duì)稱性的運(yùn)用,以及化簡(jiǎn)整理的運(yùn)算能力,屬于中檔題二、填空題:本題共4小題,每小題5分13(5分)ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,若cosA=,cosC=,a=1,則b=【考點(diǎn)】HU:解三角形菁優(yōu)網(wǎng)版權(quán)所有【專題】34:方程思想;48:分析法;56:三角函數(shù)的求值;58:解三角形【分析】運(yùn)用同角的平方關(guān)系可得sinA,sinC,再由誘導(dǎo)公式和兩角和的正弦公式,可得sinB,運(yùn)用正弦定理可得

23、b=,代入計(jì)算即可得到所求值【解答】解:由cosA=,cosC=,可得sinA=,sinC=,sinB=sin(A+C)=sinAcosC+cosAsinC=+=,由正弦定理可得b=故答案為:【點(diǎn)評(píng)】本題考查正弦定理的運(yùn)用,同時(shí)考查兩角和的正弦公式和誘導(dǎo)公式,以及同角的平方關(guān)系的運(yùn)用,考查運(yùn)算能力,屬于中檔題14(5分),是兩個(gè)平面,m,n是兩條直線,有下列四個(gè)命題:如果mn,m,n,那么如果m,n,那么mn如果,m,那么m如果mn,那么m與所成的角和n與所成的角相等其中正確的命題是(填序號(hào))【考點(diǎn)】2K:命題的真假判斷與應(yīng)用;LO:空間中直線與直線之間的位置關(guān)系;LP:空間中直線與平面之間的

24、位置關(guān)系菁優(yōu)網(wǎng)版權(quán)所有【專題】2A:探究型;5F:空間位置關(guān)系與距離;5Q:立體幾何【分析】根據(jù)空間直線與平面的位置關(guān)系的判定方法及幾何特征,分析判斷各個(gè)結(jié)論的真假,可得答案【解答】解:如果mn,m,n,不能得出,故錯(cuò)誤;如果n,則存在直線l,使nl,由m,可得ml,那么mn故正確;如果,m,那么m與無(wú)公共點(diǎn),則m故正確如果mn,那么m,n與所成的角和m,n與所成的角均相等故正確;故答案為:【點(diǎn)評(píng)】本題以命題的真假判斷與應(yīng)用為載體,考查了空間直線與平面的位置關(guān)系,難度中檔15(5分)有三張卡片,分別寫(xiě)有1和2,1和3,2和3甲,乙,丙三人各取走一張卡片,甲看了乙的卡片后說(shuō):“我與乙的卡片上相同

25、的數(shù)字不是2”,乙看了丙的卡片后說(shuō):“我與丙的卡片上相同的數(shù)字不是1”,丙說(shuō):“我的卡片上的數(shù)字之和不是5”,則甲的卡片上的數(shù)字是1和3【考點(diǎn)】F4:進(jìn)行簡(jiǎn)單的合情推理菁優(yōu)網(wǎng)版權(quán)所有【專題】2A:探究型;49:綜合法;5L:簡(jiǎn)易邏輯【分析】可先根據(jù)丙的說(shuō)法推出丙的卡片上寫(xiě)著1和2,或1和3,分別討論這兩種情況,根據(jù)甲和乙的說(shuō)法可分別推出甲和乙卡片上的數(shù)字,這樣便可判斷出甲卡片上的數(shù)字是多少【解答】解:根據(jù)丙的說(shuō)法知,丙的卡片上寫(xiě)著1和2,或1和3;(1)若丙的卡片上寫(xiě)著1和2,根據(jù)乙的說(shuō)法知,乙的卡片上寫(xiě)著2和3;根據(jù)甲的說(shuō)法知,甲的卡片上寫(xiě)著1和3;(2)若丙的卡片上寫(xiě)著1和3,根據(jù)乙的說(shuō)法

26、知,乙的卡片上寫(xiě)著2和3;又甲說(shuō),“我與乙的卡片上相同的數(shù)字不是2”;甲的卡片上寫(xiě)的數(shù)字不是1和2,這與已知矛盾;甲的卡片上的數(shù)字是1和3故答案為:1和3【點(diǎn)評(píng)】考查進(jìn)行簡(jiǎn)單的合情推理的能力,以及分類討論得到解題思想,做這類題注意找出解題的突破口16(5分)若直線y=kx+b是曲線y=lnx+2的切線,也是曲線y=ln(x+1)的切線,則b=1ln2【考點(diǎn)】6H:利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程菁優(yōu)網(wǎng)版權(quán)所有【專題】53:導(dǎo)數(shù)的綜合應(yīng)用【分析】先設(shè)切點(diǎn),然后利用切點(diǎn)來(lái)尋找切線斜率的聯(lián)系,以及對(duì)應(yīng)的函數(shù)值,綜合聯(lián)立求解即可【解答】解:設(shè)y=kx+b與y=lnx+2和y=ln(x+1)的切點(diǎn)分別為(

27、x1,kx1+b)、(x2,kx2+b);由導(dǎo)數(shù)的幾何意義可得k=,得x1=x2+1再由切點(diǎn)也在各自的曲線上,可得聯(lián)立上述式子解得;從而kx1+b=lnx1+2得出b=1ln2【點(diǎn)評(píng)】本題考查了導(dǎo)數(shù)的幾何意義,體現(xiàn)了方程思想,對(duì)學(xué)生綜合計(jì)算能力有一定要求,中檔題三、解答題:解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟17(12分)Sn為等差數(shù)列an的前n項(xiàng)和,且a1=1,S7=28,記bn=lgan,其中x表示不超過(guò)x的最大整數(shù),如0.9=0,lg99=1()求b1,b11,b101;()求數(shù)列bn的前1000項(xiàng)和【考點(diǎn)】83:等差數(shù)列的性質(zhì);8E:數(shù)列的求和菁優(yōu)網(wǎng)版權(quán)所有【專題】11:計(jì)算題;29

28、:規(guī)律型;35:轉(zhuǎn)化思想;54:等差數(shù)列與等比數(shù)列【分析】()利用已知條件求出等差數(shù)列的公差,求出通項(xiàng)公式,然后求解b1,b11,b101;()找出數(shù)列的規(guī)律,然后求數(shù)列bn的前1000項(xiàng)和【解答】解:()Sn為等差數(shù)列an的前n項(xiàng)和,且a1=1,S7=28,7a4=28可得a4=4,則公差d=1an=n,bn=lgn,則b1=lg1=0,b11=lg11=1,b101=lg101=2()由()可知:b1=b2=b3=b9=0,b10=b11=b12=b99=1b100=b101=b102=b103=b999=2,b10,00=3數(shù)列bn的前1000項(xiàng)和為:90+901+9002+3=1893

29、【點(diǎn)評(píng)】本題考查數(shù)列的性質(zhì),數(shù)列求和,考查分析問(wèn)題解決問(wèn)題的能力,以及計(jì)算能力18(12分)某保險(xiǎn)的基本保費(fèi)為a(單位:元),繼續(xù)購(gòu)買該保險(xiǎn)的投保人成為續(xù)保人,續(xù)保人本年度的保費(fèi)與其上年度出險(xiǎn)次數(shù)的關(guān)聯(lián)如下:上年度出險(xiǎn)次數(shù)012345保費(fèi)0.85aa1.25a1.5a1.75a2a設(shè)該險(xiǎn)種一續(xù)保人一年內(nèi)出險(xiǎn)次數(shù)與相應(yīng)概率如下:一年內(nèi)出險(xiǎn)次數(shù)012345概率0.300.150.200.200.100.05()求一續(xù)保人本年度的保費(fèi)高于基本保費(fèi)的概率;()若一續(xù)保人本年度的保費(fèi)高于基本保費(fèi),求其保費(fèi)比基本保費(fèi)高出60%的概率;()求續(xù)保人本年度的平均保費(fèi)與基本保費(fèi)的比值【考點(diǎn)】CB:古典概型及其概

30、率計(jì)算公式菁優(yōu)網(wǎng)版權(quán)所有【專題】11:計(jì)算題;35:轉(zhuǎn)化思想;49:綜合法;5I:概率與統(tǒng)計(jì)【分析】()上年度出險(xiǎn)次數(shù)大于等于2時(shí),續(xù)保人本年度的保費(fèi)高于基本保費(fèi),由此利用該險(xiǎn)種一續(xù)保人一年內(nèi)出險(xiǎn)次數(shù)與相應(yīng)概率統(tǒng)計(jì)表根據(jù)對(duì)立事件概率計(jì)算公式能求出一續(xù)保人本年度的保費(fèi)高于基本保費(fèi)的概率()設(shè)事件A表示“一續(xù)保人本年度的保費(fèi)高于基本保費(fèi)”,事件B表示“一續(xù)保人本年度的保費(fèi)比基本保費(fèi)高出60%”,由題意求出P(A),P(AB),由此利用條件概率能求出若一續(xù)保人本年度的保費(fèi)高于基本保費(fèi),則其保費(fèi)比基本保費(fèi)高出60%的概率()由題意,能求出續(xù)保人本年度的平均保費(fèi)與基本保費(fèi)的比值【解答】解:()某保險(xiǎn)的基

31、本保費(fèi)為a(單位:元),上年度出險(xiǎn)次數(shù)大于等于2時(shí),續(xù)保人本年度的保費(fèi)高于基本保費(fèi),由該險(xiǎn)種一續(xù)保人一年內(nèi)出險(xiǎn)次數(shù)與相應(yīng)概率統(tǒng)計(jì)表得:一續(xù)保人本年度的保費(fèi)高于基本保費(fèi)的概率:p1=10.300.15=0.55()設(shè)事件A表示“一續(xù)保人本年度的保費(fèi)高于基本保費(fèi)”,事件B表示“一續(xù)保人本年度的保費(fèi)比基本保費(fèi)高出60%”,由題意P(A)=0.55,P(AB)=0.10+0.05=0.15,由題意得若一續(xù)保人本年度的保費(fèi)高于基本保費(fèi),則其保費(fèi)比基本保費(fèi)高出60%的概率:p2=P(B|A)=()由題意,續(xù)保人本年度的平均保費(fèi)與基本保費(fèi)的比值為:=1.23,續(xù)保人本年度的平均保費(fèi)與基本保費(fèi)的比值為1.23

32、【點(diǎn)評(píng)】本題考查概率的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意對(duì)立事件概率計(jì)算公式、條件概率計(jì)算公式的合理運(yùn)用19(12分)如圖,菱形ABCD的對(duì)角線AC與BD交于點(diǎn)O,AB=5,AC=6,點(diǎn)E,F(xiàn)分別在AD,CD上,AE=CF=,EF交于BD于點(diǎn)H,將DEF沿EF折到DEF的位置,OD=()證明:DH平面ABCD;()求二面角BDAC的正弦值【考點(diǎn)】MJ:二面角的平面角及求法菁優(yōu)網(wǎng)版權(quán)所有【專題】15:綜合題;35:轉(zhuǎn)化思想;44:數(shù)形結(jié)合法;5G:空間角【分析】()由底面ABCD為菱形,可得AD=CD,結(jié)合AE=CF可得EFAC,再由ABCD是菱形,得ACBD,進(jìn)一步得到EFBD,由EFDH

33、,可得EFDH,然后求解直角三角形得DHOH,再由線面垂直的判定得DH平面ABCD;()以H為坐標(biāo)原點(diǎn),建立如圖所示空間直角坐標(biāo)系,由已知求得所用點(diǎn)的坐標(biāo),得到的坐標(biāo),分別求出平面ABD與平面ADC的一個(gè)法向量,設(shè)二面角二面角BDAC的平面角為,求出|cos|則二面角BDAC的正弦值可求【解答】()證明:ABCD是菱形,AD=DC,又AE=CF=,則EFAC,又由ABCD是菱形,得ACBD,則EFBD,EFDH,則EFDH,AC=6,AO=3,又AB=5,AOOB,OB=4,OH=1,則DH=DH=3,|OD|2=|OH|2+|DH|2,則DHOH,又OHEF=H,DH平面ABCD;()解:以

34、H為坐標(biāo)原點(diǎn),建立如圖所示空間直角坐標(biāo)系,AB=5,AC=6,B(5,0,0),C(1,3,0),D(0,0,3),A(1,3,0),設(shè)平面ABD的一個(gè)法向量為,由,得,取x=3,得y=4,z=5同理可求得平面ADC的一個(gè)法向量,設(shè)二面角二面角BDAC的平面角為,則|cos|=二面角BDAC的正弦值為sin=【點(diǎn)評(píng)】本題考查線面垂直的判定,考查了二面角的平面角的求法,訓(xùn)練了利用平面的法向量求解二面角問(wèn)題,體現(xiàn)了數(shù)學(xué)轉(zhuǎn)化思想方法,是中檔題20(12分)已知橢圓E:+=1的焦點(diǎn)在x軸上,A是E的左頂點(diǎn),斜率為k(k0)的直線交E于A,M兩點(diǎn),點(diǎn)N在E上,MANA()當(dāng)t=4,|AM|=|AN|時(shí),

35、求AMN的面積;()當(dāng)2|AM|=|AN|時(shí),求k的取值范圍【考點(diǎn)】KH:直線與圓錐曲線的綜合菁優(yōu)網(wǎng)版權(quán)所有【專題】35:轉(zhuǎn)化思想;48:分析法;5E:圓錐曲線中的最值與范圍問(wèn)題【分析】()方法一、求出t=4時(shí),橢圓方程和頂點(diǎn)A,設(shè)出直線AM的方程,代入橢圓方程,求交點(diǎn)M,運(yùn)用弦長(zhǎng)公式求得|AM|,由垂直的條件可得|AN|,再由|AM|=|AN|,解得k=1,運(yùn)用三角形的面積公式可得AMN的面積;方法二、運(yùn)用橢圓的對(duì)稱性,可得直線AM的斜率為1,求得AM的方程代入橢圓方程,解方程可得M,N的坐標(biāo),運(yùn)用三角形的面積公式計(jì)算即可得到;()直線AM的方程為y=k(x+),代入橢圓方程,求得交點(diǎn)M,可

36、得|AM|,|AN|,再由2|AM|=|AN|,求得t,再由橢圓的性質(zhì)可得t3,解不等式即可得到所求范圍【解答】解:()方法一、t=4時(shí),橢圓E的方程為+=1,A(2,0),直線AM的方程為y=k(x+2),代入橢圓方程,整理可得(3+4k2)x2+16k2x+16k212=0,解得x=2或x=,則|AM|=|2|=,由ANAM,可得|AN|=,由|AM|=|AN|,k0,可得=,整理可得(k1)(4k2+k+4)=0,由4k2+k+4=0無(wú)實(shí)根,可得k=1,即有AMN的面積為|AM|2=()2=;方法二、由|AM|=|AN|,可得M,N關(guān)于x軸對(duì)稱,由MANA可得直線AM的斜率為1,直線AM

37、的方程為y=x+2,代入橢圓方程+=1,可得7x2+16x+4=0,解得x=2或,M(,),N(,),則AMN的面積為(+2)=;()直線AM的方程為y=k(x+),代入橢圓方程,可得(3+tk2)x2+2tk2x+t2k23t=0,解得x=或x=,即有|AM|=|=,|AN|=,由2|AM|=|AN|,可得2=,整理得t=,由橢圓的焦點(diǎn)在x軸上,則t3,即有3,即有0,可得k2,即k的取值范圍是(,2)【點(diǎn)評(píng)】本題考查橢圓的方程的運(yùn)用,考查直線方程和橢圓方程聯(lián)立,求交點(diǎn),以及弦長(zhǎng)公式的運(yùn)用,考查化簡(jiǎn)整理的運(yùn)算能力,屬于中檔題21(12分)()討論函數(shù)f(x)=ex的單調(diào)性,并證明當(dāng)x0時(shí),(

38、x2)ex+x+20;()證明:當(dāng)a0,1)時(shí),函數(shù)g(x)=(x0)有最小值設(shè)g(x)的最小值為h(a),求函數(shù)h(a)的值域【考點(diǎn)】6B:利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性;6D:利用導(dǎo)數(shù)研究函數(shù)的極值菁優(yōu)網(wǎng)版權(quán)所有【專題】53:導(dǎo)數(shù)的綜合應(yīng)用【分析】從導(dǎo)數(shù)作為切入點(diǎn)探求函數(shù)的單調(diào)性,通過(guò)函數(shù)單調(diào)性來(lái)求得函數(shù)的值域,利用復(fù)合函數(shù)的求導(dǎo)公式進(jìn)行求導(dǎo),然后逐步分析即可【解答】解:(1)證明:f(x)=f(x)=ex()=當(dāng)x(,2)(2,+)時(shí),f(x)0f(x)在(,2)和(2,+)上單調(diào)遞增x0時(shí),f(0)=1即(x2)ex+x+20(2)g(x)= a0,1)由(1)知,當(dāng)x0時(shí),f(x)=的值域

39、為(1,+),只有一解使得,只需et0恒成立,可得2t2,由x0,可得t(0,2當(dāng)x(0,t)時(shí),g(x)0,g(x)單調(diào)減;當(dāng)x(t,+),g(x)0,g(x)單調(diào)增;h(a)=記k(t)=,在t(0,2時(shí),k(t)=0,故k(t)單調(diào)遞增,所以h(a)=k(t)(,【點(diǎn)評(píng)】該題考查了導(dǎo)數(shù)在函數(shù)單調(diào)性上的應(yīng)用,重點(diǎn)是掌握復(fù)合函數(shù)的求導(dǎo),以及導(dǎo)數(shù)代表的意義,計(jì)算量較大,難度較大請(qǐng)考生在第2224題中任選一個(gè)題作答,如果多做,則按所做的第一題計(jì)分.選修4-1:幾何證明選講22(10分)如圖,在正方形ABCD中,E,G分別在邊DA,DC上(不與端點(diǎn)重合),且DE=DG,過(guò)D點(diǎn)作DFCE,垂足為F(

40、)證明:B,C,G,F(xiàn)四點(diǎn)共圓;()若AB=1,E為DA的中點(diǎn),求四邊形BCGF的面積【考點(diǎn)】N8:圓內(nèi)接多邊形的性質(zhì)與判定菁優(yōu)網(wǎng)版權(quán)所有【專題】14:證明題【分析】()證明B,C,G,F(xiàn)四點(diǎn)共圓可證明四邊形BCGF對(duì)角互補(bǔ),由已知條件可知BCD=90,因此問(wèn)題可轉(zhuǎn)化為證明GFB=90;()在RtDFC中,GF=CD=GC,因此可得GFBGCB,則S四邊形BCGF=2SBCG,據(jù)此解答【解答】()證明:DFCE,RtDFCRtEDC,=,DE=DG,CD=BC,=,又GDF=DEF=BCF,GDFBCF,CFB=DFG,GFB=GFC+CFB=GFC+DFG=DFC=90,GFB+GCB=18

41、0,B,C,G,F(xiàn)四點(diǎn)共圓()E為AD中點(diǎn),AB=1,DG=CG=DE=,在RtDFC中,GF=CD=GC,連接GB,RtBCGRtBFG,S四邊形BCGF=2SBCG=21=【點(diǎn)評(píng)】本題考查四點(diǎn)共圓的判斷,主要根據(jù)對(duì)角互補(bǔ)進(jìn)行判斷,注意三角形相似和全等性質(zhì)的應(yīng)用選修4-4:坐標(biāo)系與參數(shù)方程23在直角坐標(biāo)系xOy中,圓C的方程為(x+6)2+y2=25()以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,求C的極坐標(biāo)方程;()直線l的參數(shù)方程是(t為參數(shù)),l與C交與A,B兩點(diǎn),|AB|=,求l的斜率【考點(diǎn)】J1:圓的標(biāo)準(zhǔn)方程;J8:直線與圓相交的性質(zhì)菁優(yōu)網(wǎng)版權(quán)所有【專題】11:計(jì)算題;35:轉(zhuǎn)

42、化思想;49:綜合法;5B:直線與圓【分析】()把圓C的標(biāo)準(zhǔn)方程化為一般方程,由此利用2=x2+y2,x=cos,y=sin,能求出圓C的極坐標(biāo)方程()由直線l的參數(shù)方程求出直線l的一般方程,再求出圓心到直線距離,由此能求出直線l的斜率【解答】解:()圓C的方程為(x+6)2+y2=25,x2+y2+12x+11=0,2=x2+y2,x=cos,y=sin,C的極坐標(biāo)方程為2+12cos+11=0()直線l的參數(shù)方程是(t為參數(shù)),t=,代入y=tsin,得:直線l的一般方程y=tanx,l與C交與A,B兩點(diǎn),|AB|=,圓C的圓心C(6,0),半徑r=5,圓心到直線的距離d=圓心C(6,0)

43、到直線距離d=,解得tan2=,tan=l的斜率k=【點(diǎn)評(píng)】本題考查圓的極坐標(biāo)方程的求法,考查直線的斜率的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意點(diǎn)到直線公式、圓的性質(zhì)的合理運(yùn)用選修4-5:不等式選講24已知函數(shù)f(x)=|x|+|x+|,M為不等式f(x)2的解集()求M;()證明:當(dāng)a,bM時(shí),|a+b|1+ab|【考點(diǎn)】R5:絕對(duì)值不等式的解法菁優(yōu)網(wǎng)版權(quán)所有【專題】32:分類討論;35:轉(zhuǎn)化思想;4C:分類法;4R:轉(zhuǎn)化法;59:不等式的解法及應(yīng)用【分析】(I)分當(dāng)x時(shí),當(dāng)x時(shí),當(dāng)x時(shí)三種情況,分別求解不等式,綜合可得答案;()當(dāng)a,bM時(shí),(a21)(b21)0,即a2b2+1a2+b2

44、,配方后,可證得結(jié)論【解答】解:(I)當(dāng)x時(shí),不等式f(x)2可化為:xx2,解得:x1,1x,當(dāng)x時(shí),不等式f(x)2可化為:x+x+=12,此時(shí)不等式恒成立,x,當(dāng)x時(shí),不等式f(x)2可化為:+x+x+2,解得:x1,x1,綜上可得:M=(1,1);證明:()當(dāng)a,bM時(shí),(a21)(b21)0,即a2b2+1a2+b2,即a2b2+1+2aba2+b2+2ab,即(ab+1)2(a+b)2,即|a+b|1+ab|【點(diǎn)評(píng)】本題考查的知識(shí)點(diǎn)是絕對(duì)值不等式的解法,不等式的證明,難度中檔一.集合與函數(shù)1.進(jìn)行集合的交、并、補(bǔ)運(yùn)算時(shí),不要忘了全集和空集的特殊情況,不要忘記了借助數(shù)軸和文氏圖進(jìn)行求

45、解.2.在應(yīng)用條件時(shí),易A忽略是空集的情況3.你會(huì)用補(bǔ)集的思想解決有關(guān)問(wèn)題嗎?4.簡(jiǎn)單命題與復(fù)合命題有什么區(qū)別?四種命題之間的相互關(guān)系是什么?如何判斷充分與必要條件?5.你知道“否命題”與“命題的否定形式”的區(qū)別.6.求解與函數(shù)有關(guān)的問(wèn)題易忽略定義域優(yōu)先的原則.7.判斷函數(shù)奇偶性時(shí),易忽略檢驗(yàn)函數(shù)定義域是否關(guān)于原點(diǎn)對(duì)稱.8.求一個(gè)函數(shù)的解析式和一個(gè)函數(shù)的反函數(shù)時(shí),易忽略標(biāo)注該函數(shù)的定義域.9.原函數(shù)在區(qū)間-a,a上單調(diào)遞增,則一定存在反函數(shù),且反函數(shù)也單調(diào)遞增;但一個(gè)函數(shù)存在反函數(shù),此函數(shù)不一定單調(diào).例如:.10.你熟練地掌握了函數(shù)單調(diào)性的證明方法嗎?定義法(取值,作差,判正負(fù))和導(dǎo)數(shù)法11.

46、求函數(shù)單調(diào)性時(shí),易錯(cuò)誤地在多個(gè)單調(diào)區(qū)間之間添加符號(hào)“”和“或”;單調(diào)區(qū)間不能用集合或不等式表示.12.求函數(shù)的值域必須先求函數(shù)的定義域。13.如何應(yīng)用函數(shù)的單調(diào)性與奇偶性解題?比較函數(shù)值的大小;解抽象函數(shù)不等式;求參數(shù)的范圍(恒成立問(wèn)題).這幾種基本應(yīng)用你掌握了嗎?14.解對(duì)數(shù)函數(shù)問(wèn)題時(shí),你注意到真數(shù)與底數(shù)的限制條件了嗎?(真數(shù)大于零,底數(shù)大于零且不等于1)字母底數(shù)還需討論15.三個(gè)二次(哪三個(gè)二次?)的關(guān)系及應(yīng)用掌握了嗎?如何利用二次函數(shù)求最值?16.用換元法解題時(shí)易忽略換元前后的等價(jià)性,易忽略參數(shù)的范圍。17.“實(shí)系數(shù)一元二次方程有實(shí)數(shù)解”轉(zhuǎn)化時(shí),你是否注意到:當(dāng)時(shí),“方程有解”不能轉(zhuǎn)化為

47、。若原題中沒(méi)有指出是二次方程,二次函數(shù)或二次不等式,你是否考慮到二次項(xiàng)系數(shù)可能為的零的情形?二.不等式18.利用均值不等式求最值時(shí),你是否注意到:“一正;二定;三等”.19.絕對(duì)值不等式的解法及其幾何意義是什么?20.解分式不等式應(yīng)注意什么問(wèn)題?用“根軸法”解整式(分式)不等式的注意事項(xiàng)是什么?21.解含參數(shù)不等式的通法是“定義域?yàn)榍疤幔瘮?shù)的單調(diào)性為基礎(chǔ),分類討論是關(guān)鍵”,注意解完之后要寫(xiě)上:“綜上,原不等式的解集是”.22.在求不等式的解集、定義域及值域時(shí),其結(jié)果一定要用集合或區(qū)間表示;不能用不等式表示.23.兩個(gè)不等式相乘時(shí),必須注意同向同正時(shí)才能相乘,即同向同正可乘;同時(shí)要注意“同號(hào)可

48、倒”即ab0,a0.三.數(shù)列24.解決一些等比數(shù)列的前項(xiàng)和問(wèn)題,你注意到要對(duì)公比及兩種情況進(jìn)行討論了嗎?25.在“已知,求”的問(wèn)題中,你在利用公式時(shí)注意到了嗎?(時(shí),應(yīng)有)需要驗(yàn)證,有些題目通項(xiàng)是分段函數(shù)。26.你知道存在的條件嗎?(你理解數(shù)列、有窮數(shù)列、無(wú)窮數(shù)列的概念嗎?你知道無(wú)窮數(shù)列的前項(xiàng)和與所有項(xiàng)的和的不同嗎?什么樣的無(wú)窮等比數(shù)列的所有項(xiàng)的和必定存在?27.數(shù)列單調(diào)性問(wèn)題能否等同于對(duì)應(yīng)函數(shù)的單調(diào)性問(wèn)題?(數(shù)列是特殊函數(shù),但其定義域中的值不是連續(xù)的。)28.應(yīng)用數(shù)學(xué)歸納法一要注意步驟齊全,二要注意從到過(guò)程中,先假設(shè)時(shí)成立,再結(jié)合一些數(shù)學(xué)方法用來(lái)證明時(shí)也成立。四. HYPERLINK /se

49、arch.aspx t /content/19/1226/14/_blank 三角函數(shù)29.正角、負(fù)角、零角、象限角的概念你清楚嗎?,若角的終邊在坐標(biāo)軸上,那它歸哪個(gè)象限呢?你知道銳角與第一象限的角;終邊相同的角和相等的角的區(qū)別嗎?30.三角函數(shù)的定義及單位圓內(nèi)的三角函數(shù)線(正弦線、余弦線、正切線)的定義你知道嗎?31.在解三角問(wèn)題時(shí),你注意到正切函數(shù)、余切函數(shù)的定義域了嗎?你注意到正弦函數(shù)、余弦函數(shù)的有界性了嗎?32.你還記得三角化簡(jiǎn)的通性通法嗎?(切割化弦、降冪公式、用三角公式轉(zhuǎn)化出現(xiàn)特殊角.異角化同角,異名化同名,高次化低次)33.反正弦、反余弦、反正切函數(shù)的取值范圍分別是34.你還記得

50、某些特殊角的三角函數(shù)值嗎?35.掌握正弦函數(shù)、余弦函數(shù)及正切函數(shù)的圖象和性質(zhì).你會(huì)寫(xiě)三角函數(shù)的單調(diào)區(qū)間嗎?會(huì)寫(xiě)簡(jiǎn)單的三角不等式的解集嗎?(要注意數(shù)形結(jié)合與書(shū)寫(xiě)規(guī)范,可別忘了),你是否清楚函數(shù)的圖象可以由函數(shù)經(jīng)過(guò)怎樣的變換得到嗎?36.函數(shù)的圖象的平移,方程的平移以及點(diǎn)的平移公式易混:(1)函數(shù)的圖象的平移為“左+右-,上+下-”;如函數(shù)的圖象左移2個(gè)單位且下移3個(gè)單位得到的圖象的解析式為,即.(2)方程表示的圖形的平移為“左+右-,上-下+”;如直線左移2個(gè)個(gè)單位且下移3個(gè)單位得到的圖象的解析式為,即.(3)點(diǎn)的平移公式:點(diǎn)按向量平移到點(diǎn),則.37.在三角函數(shù)中求一個(gè)角時(shí),注意考慮兩方面了嗎?

51、(先求出某一個(gè)三角函數(shù)值,再判定角的范圍)38.形如的周期都是,但的周期為。39.正弦定理時(shí)易忘比值還等于2R.五.平面向量40.數(shù)0有區(qū)別,的模為數(shù)0,它不是沒(méi)有方向,而是方向不定??梢钥闯膳c任意向量平行,但與任意向量都不垂直。41.數(shù)量積與兩個(gè)實(shí)數(shù)乘積的區(qū)別:在實(shí)數(shù)中:若,且ab=0,則b=0,但在向量的數(shù)量積中,若,且,不能推出.已知實(shí)數(shù),且,則a=c,但在向量的數(shù)量積中沒(méi)有.在實(shí)數(shù)中有,但是在向量的數(shù)量積中,這是因?yàn)樽筮吺桥c共線的向量,而右邊是與共線的向量.42.是向量與平行的充分而不必要條件,是向量和向量夾角為鈍角的必要而不充分條件。六.解析幾何43.在用點(diǎn)斜式、斜截式求直線的方程時(shí)

52、,你是否注意到不存在的情況?44.用到角公式時(shí),易將直線l1、l2的斜率k1、k2的順序弄顛倒。45.直線的傾斜角、到的角、與的夾角的取值范圍依次是。46.定比分點(diǎn)的坐標(biāo)公式是什么?(起點(diǎn),中點(diǎn),分點(diǎn)以及值可要搞清),在利用定比分點(diǎn)解題時(shí),你注意到了嗎?47.對(duì)不重合的兩條直線(建議在解題時(shí),討論后利用斜率和截距)48.直線在兩坐標(biāo)軸上的截距相等,直線方程可以理解為,但不要忘記當(dāng)時(shí),直線在兩坐標(biāo)軸上的截距都是0,亦為截距相等。49.解決線性規(guī)劃問(wèn)題的基本步驟是什么?請(qǐng)你注意解題格式和完整的文字表達(dá).(設(shè)出變量,寫(xiě)出目標(biāo)函數(shù)寫(xiě)出線性約束條件畫(huà)出可行域作出目標(biāo)函數(shù)對(duì)應(yīng)的系列平行線,找到并求出最優(yōu)解應(yīng)用題一定要有答。)50.三種圓錐曲線的定義、圖形、標(biāo)準(zhǔn)方程、幾何性質(zhì),橢圓與雙曲線中的兩個(gè)特征三角形你掌握了嗎?51.圓、和橢圓的參數(shù)方程是怎樣的?常用參數(shù)方程的方法解

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論