版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、截距 由直線在軸和軸上的截距確定的直線的截距式方程,簡稱截距式:牢記 口訣 兩點(diǎn)斜截距-兩點(diǎn) 點(diǎn)斜 斜截 截距5、設(shè)兩條直線分別為,: 若,則有且。 若點(diǎn)P(x0,y0)到直線y=kx+b(即:kx-y+b=0) 的距離: 拋物線中, a b c,的作用 (1)決定開口方向及開口大小,這及中的完全一樣. (2)和共同決定拋物線對(duì)稱軸的位置.由于拋物線的對(duì)稱軸是直線,故:時(shí),對(duì)稱軸為軸;(即、同號(hào))時(shí),對(duì)稱軸在軸左側(cè);(即、異號(hào))時(shí),對(duì)稱軸在軸右側(cè). 口訣 同左 異右 (3)的大小決定拋物線及軸交點(diǎn)的位置. 當(dāng)時(shí),拋物線及軸有且只有一個(gè)交點(diǎn)(0,): ,拋物線經(jīng)過原點(diǎn); ,及軸交于正半軸; ,及
2、軸交于負(fù)半軸. 以上三點(diǎn)中,當(dāng)結(jié)論和條件互換時(shí),仍成立.如拋物線的對(duì)稱軸在軸右側(cè),則 .十一,中考點(diǎn)擊 考點(diǎn)分析:內(nèi)容要求1、函數(shù)的概念和平面直角坐標(biāo)系中某些點(diǎn)的坐標(biāo)特點(diǎn)2、自變量及函數(shù)之間的變化關(guān)系及圖像的識(shí)別,理解圖像及變量的關(guān)系3、一次函數(shù)的概念和圖像4、一次函數(shù)的增減性、象限分布情況,會(huì)作圖5、反比例函數(shù)的概念、圖像特征,以及在實(shí)際生活中的應(yīng)用6、二次函數(shù)的概念和性質(zhì),在實(shí)際情景中理解二次函數(shù)的意義,會(huì)利用二次函數(shù)刻畫實(shí)際問題中變量之間的關(guān)系并能解決實(shí)際生活問題命題預(yù)測:函數(shù)是數(shù)形結(jié)合的重要體現(xiàn),是每年中考的必考內(nèi)容,函數(shù)的概念主要用選擇、填空的形式考查自變量的取值范圍,及自變量及因變
3、量的變化圖像、平面直角坐標(biāo)系等,一般占2%左右一次函數(shù)及一次方程有緊密地聯(lián)系,是中考必考內(nèi)容,一般以填空、選擇、解答題及綜合題的形式考查,占5%左右反比例函數(shù)的圖像和性質(zhì)的考查常以客觀題形式出現(xiàn),要關(guān)注反比例函數(shù)及實(shí)際問題的聯(lián)系,突出應(yīng)用價(jià)值,36分;二次函數(shù)是初中數(shù)學(xué)的一個(gè)十分重要的內(nèi)容,是中考的熱點(diǎn),多以壓軸題出現(xiàn)在試卷中要求:能通過對(duì)實(shí)際問題情景分析確定二次函數(shù)的表達(dá)式,并體會(huì)二次函數(shù)的意義;會(huì)用描點(diǎn)法畫二次函數(shù)圖像,能叢圖像上分析二次函數(shù)的性質(zhì);會(huì)根據(jù)公式確定圖像的頂點(diǎn)、開口方向和對(duì)稱軸,并能解決實(shí)際問題會(huì)求一元二次方程的近似值分析近年中考,尤其是課改實(shí)驗(yàn)區(qū)的試題,預(yù)計(jì)2009年除了繼
4、續(xù)考查自變量的取值范圍及自變量及因變量之間的變化圖像,一次函數(shù)的圖像和性質(zhì),在實(shí)際問題中考查對(duì)反比例函數(shù)的概念及性質(zhì)的理解同時(shí)將注重考查二次函數(shù),特別是二次函數(shù)的在實(shí)際生活中應(yīng)用十二,初中數(shù)學(xué)助記口訣(函數(shù)部分)特殊點(diǎn)坐標(biāo)特征:坐標(biāo)平面點(diǎn)(x,y),橫在前來縱在后;(+,+),(-,+),(-,-)和(+,-),四個(gè)象限分前后;X軸上y為0,x為0在Y軸。對(duì)稱點(diǎn)坐標(biāo):對(duì)稱點(diǎn)坐標(biāo)要記牢,相反數(shù)位置莫混淆,X軸對(duì)稱y相反,Y軸對(duì)稱,x前面添負(fù)號(hào);原點(diǎn)對(duì)稱最好記,橫縱坐標(biāo)變符號(hào)。自變量的取值范圍:分式分母不為零,偶次根下負(fù)不行;零次冪底數(shù)不為零,整式、奇次根全能行。函數(shù)圖像的移動(dòng)規(guī)律:若把一次函數(shù)解
5、析式寫成y=k(x+0)+b、二次函數(shù)的解析式寫成y=a(x+h)2+k的形式,則用下面后的口訣“左右平移在括號(hào),上下平移在末稍, 同左上加 異右下減一次函數(shù)圖像及性質(zhì)口訣:一次函數(shù)是直線,圖像經(jīng)過仨象限;正比例函數(shù)更簡單,經(jīng)過原點(diǎn)一直線;兩個(gè)系數(shù)k及b,作用之大莫小看,k是斜率定夾角,b及Y軸來相見,k為正來右上斜,x增減y增減;k為負(fù)來左下展,變化規(guī)律正相反;k的絕對(duì)值越大,線離橫軸就越遠(yuǎn)。二次函數(shù)圖像及性質(zhì)口訣:二次函數(shù)拋物線,圖象對(duì)稱是關(guān)鍵;開口、頂點(diǎn)和交點(diǎn),它們確定圖象現(xiàn);開口、大小由a斷,c及Y軸來相見,b的符號(hào)較特別,符號(hào)及a相關(guān)聯(lián);頂點(diǎn)位置先找見,Y軸作為參考線,左同右異中為0
6、,牢記心中莫混亂;頂點(diǎn)坐標(biāo)最重要,一般式配方它就現(xiàn),橫標(biāo)即為對(duì)稱軸,縱標(biāo)函數(shù)最值見。若求對(duì)稱軸位置,符號(hào)反,一般、頂點(diǎn)、交點(diǎn)式,不同表達(dá)能互換。反比例函數(shù)圖像及性質(zhì)口訣:反比例函數(shù)有特點(diǎn),雙曲線相背離的遠(yuǎn);k為正,圖在一、三(象)限,k為負(fù),圖在二、四(象)限;圖在一、三函數(shù)減,兩個(gè)分支分別減。圖在二、四正相反,兩個(gè)分支分別添;線越長越近軸,永遠(yuǎn)及軸不沾邊。正比例函數(shù)是直線,圖象一定過圓點(diǎn),k的正負(fù)是關(guān)鍵,決定直線的象限,負(fù)k經(jīng)過二四限,x增大y在減,上下平移k不變,由引得到一次線,向上加b向下減,圖象經(jīng)過三個(gè)限,兩點(diǎn)決定一條線,選定系數(shù)是關(guān)鍵。反比例函數(shù)雙曲線,待定只需一個(gè)點(diǎn),正k落在一三限
7、,x增大y在減,圖象上面任意點(diǎn),矩形面積都不變,對(duì)稱軸是角分線x、y的順序可交換。二次函數(shù)拋物線,選定需要三個(gè)點(diǎn),a的正負(fù)開口判,c的大小y軸看,的符號(hào)最簡便,x軸上數(shù)交點(diǎn),a、b同號(hào)軸左邊拋物線平移a不變,頂點(diǎn)牽著圖象轉(zhuǎn),三種形式可變換,配方法作用最關(guān)鍵。1 對(duì)稱點(diǎn)坐標(biāo):對(duì)稱點(diǎn)坐標(biāo)要記牢,相反數(shù)位置莫混淆,X軸對(duì)稱y相反, Y軸對(duì)稱,x前面添負(fù)號(hào); 原點(diǎn)對(duì)稱最好記,橫縱坐標(biāo)變符號(hào)。關(guān)于軸對(duì)稱關(guān)于軸對(duì)稱后,得到的解析式是; 關(guān)于軸對(duì)稱后,得到的解析式是;關(guān)于軸對(duì)稱關(guān)于軸對(duì)稱后,得到的解析式是; 關(guān)于軸對(duì)稱后,得到的解析式是;關(guān)于原點(diǎn)對(duì)稱關(guān)于原點(diǎn)對(duì)稱后,得到的解析式是;關(guān)于原點(diǎn)對(duì)稱后,得到的解析
8、式是關(guān)于頂點(diǎn)對(duì)稱關(guān)于頂點(diǎn)對(duì)稱后,得到的解析式是;關(guān)于頂點(diǎn)對(duì)稱后,得到的解析式是關(guān)于點(diǎn)對(duì)稱 關(guān)于點(diǎn)對(duì)稱后,得到的解析式是根據(jù)對(duì)稱的性質(zhì),顯然無論作何種對(duì)稱變換,拋物線的形狀一定不會(huì)發(fā)生變化,因此永遠(yuǎn)不變求拋物線的對(duì)稱拋物線的表達(dá)式時(shí),可以依據(jù)題意或方便運(yùn)算的原則,選擇合適的形式,習(xí)慣上是先確定原拋物線(或表達(dá)式已知的拋物線)的頂點(diǎn)坐標(biāo)及開口方向,再確定其對(duì)稱拋物線的頂點(diǎn)坐標(biāo)及開口方向,然后再寫出其對(duì)稱拋物線的表達(dá)式口訣 Y反對(duì)X,X反對(duì)Y,都反對(duì)原點(diǎn)2 自變量的取值范圍:分式分母不為零,偶次根下負(fù)不行;零次冪底數(shù)不為零,函數(shù)圖像的移動(dòng)規(guī)律: 若把一次函數(shù)解析式寫成y=k(x+0)+b,二次函數(shù)的
9、解析式寫成y=a(x+h)2+k的形式,則用下面后的口訣:“左右平移在括號(hào),上下平移在末稍,左正右負(fù)須牢記,上正下負(fù)錯(cuò)不了”。一次函數(shù)圖像及性質(zhì)口訣:一次函數(shù)是直線,圖像經(jīng)過仨象限;正比例函數(shù)更簡單,經(jīng)過原點(diǎn)一直線;兩個(gè)系數(shù)k及b,作用之大莫小看,k是斜率定夾角,b及Y軸來相見,k為正來右上斜,x增減y增減;k為負(fù)來左下展,變化規(guī)律正相反;k的絕對(duì)值越大,線離橫軸就越遠(yuǎn)。 二次函數(shù)圖像及性質(zhì)口訣:二次函數(shù)拋物線,圖象對(duì)稱是關(guān)鍵;開口、頂點(diǎn)和交點(diǎn),它們確定圖象限;開口、大小由a斷,c及Y軸來相見,b的符號(hào)較特別,符號(hào)及a相關(guān)聯(lián);頂點(diǎn)位置先找見,Y軸作為參考線,左同右異中為0,牢記心中莫混亂;頂點(diǎn)
10、坐標(biāo)最重要,一般式配方它就現(xiàn),橫標(biāo)即為對(duì)稱軸,縱標(biāo)函數(shù)最值見。若求對(duì)稱軸位置, 符號(hào)反,一般、頂點(diǎn)、交點(diǎn)式,不同表達(dá)能互換。反比例函數(shù)圖像及性質(zhì)口訣:反比例函數(shù)有特點(diǎn),雙曲線相背離的遠(yuǎn);k為正,圖在一、三(象)限;k為負(fù),圖在二、四(象)限;圖在一、三函數(shù)減,兩個(gè)分支分別減;圖在二、四正相反,兩個(gè)分支分別添;線越長越近軸,永遠(yuǎn)及軸不沾邊。函數(shù)學(xué)習(xí)口決:正比例函數(shù)是直線,圖象一定過原點(diǎn),k的正負(fù)是關(guān)鍵,決定直線的象限,負(fù)k經(jīng)過二四限,x增大y在減,上下平移k不變,由引得到一次線,向上加b向下減,圖象經(jīng)過三個(gè)限,兩點(diǎn)決定一條線,選定系數(shù)是關(guān)鍵;反比例函數(shù)雙曲線,待定只需一個(gè)點(diǎn),正k落在一三限,x增
11、大y在減,圖象上面任意點(diǎn),矩形面積都不變,對(duì)稱軸是角分線x、y的順序可交換;二次函數(shù)拋物線,選定需要三個(gè)點(diǎn),a的正負(fù)開口判,c的大小y軸看,的符號(hào)最簡便,x軸上數(shù)交點(diǎn),a、b同號(hào)軸左邊拋物線平移a不變,頂點(diǎn)牽著圖象轉(zhuǎn),三種形式可變換,配方法作用最關(guān)鍵。求定義域: 求定義域有講究,四項(xiàng)原則須留意。 負(fù)數(shù)不能開平方,分母為零無意義。 指是分?jǐn)?shù)底正數(shù),數(shù)零沒有零次冪。 限制條件不唯一,滿足多個(gè)不等式。 求定義域要過關(guān),四項(xiàng)原則須注意。 負(fù)數(shù)不能開平方,分母為零無意義。 分?jǐn)?shù)指數(shù)底正數(shù),數(shù)零沒有零次冪。 限制條件不唯一,不等式組求解集。解一元一次不等式: 先去分母再括號(hào),移項(xiàng)合并同類項(xiàng)。 系數(shù)化“1”
12、有講究,同乘除負(fù)要變向。 先去分母再括號(hào),移項(xiàng)別忘要變號(hào)。 同類各項(xiàng)去合并,系數(shù)化“1”注意了。 同乘除正無防礙,同乘除負(fù)也變號(hào)。 解一元二次不等式: 首先化成一般式,構(gòu)造函數(shù)第二站。 判別式值若非負(fù),曲線橫軸有交點(diǎn)。 a正開口它向上,大于零則取兩邊。 代數(shù)式若小于零,解集交點(diǎn)數(shù)之間。 方程若無實(shí)數(shù)根,口上大零解為全。 小于零將沒有解,開口向下正相反。 13.1 用公式法解一元二次方程 要用公式解方程,首先化成一般式。 調(diào)整系數(shù)隨其后,使其成為最簡比。 確定參數(shù)abc,計(jì)算方程判別式。 判別式值及零比,有無實(shí)根便得知。 有實(shí)根可套公式,沒有實(shí)根要告之。 用常規(guī)配方法解一元二次方程: 左未右已先
13、分離,二系化“1”是其次。 一系折半再平方,兩邊同加沒問題。 左邊分解右合并,直接開方去解題。 該種解法叫配方,解方程時(shí)多練習(xí)。用間接配方法解一元二次方程: 已知未知先分離,因式分解是其次。 調(diào)整系數(shù)等互反,和差積套恒等式。 完全平方等常數(shù),間接配方顯優(yōu)勢(shì) 【注】 恒等式 解一元二次方程: 方程沒有一次項(xiàng),直接開方最理想。 如果缺少常數(shù)項(xiàng),因式分解沒商量。 b、c相等都為零,等根是零不要忘。 b、c同時(shí)不為零,因式分解或配方, 也可直接套公式,因題而異擇良方。正比例函數(shù)的鑒別: 判斷正比例函數(shù),檢驗(yàn)當(dāng)分兩步走。 一量表示另一量, 有沒有。 若有再去看取值,全體實(shí)數(shù)都需要。 區(qū)分正比例函數(shù),衡量
14、可分兩步走。 一量表示另一量, 是及否。 若有還要看取值,全體實(shí)數(shù)都要有。 正比例函數(shù)的圖象及性質(zhì): 正比函數(shù)圖直線,經(jīng)過 和原點(diǎn)。 K正一三負(fù)二四,變化趨勢(shì)記心間。 K正左低右邊高,同大同小向爬山。 K負(fù)左高右邊低,一大另小下山巒。一次函數(shù): 一次函數(shù)圖直線,經(jīng)過 點(diǎn)。 K正左低右邊高,越走越高向爬山。 K負(fù)左高右邊低,越來越低很明顯。 K稱斜率b截距,截距為零變正函。 反比例函數(shù): 反比函數(shù)雙曲線,經(jīng)過 點(diǎn)。 K正一三負(fù)二四,兩軸是它漸近線。 K正左高右邊低,一三象限滑下山。 K負(fù)左低右邊高,二四象限如爬山。 二次函數(shù): 二次方程零換y,二次函數(shù)便出現(xiàn)。 全體實(shí)數(shù)定義域,圖像叫做拋物線。 拋物線有對(duì)稱軸,兩邊單調(diào)正相反。 A定開口及大小,線軸交點(diǎn)叫頂點(diǎn)。 頂點(diǎn)非高即最低。上低下高很顯眼。 如果要畫拋物線,平移也可去描點(diǎn), 提取配方定頂點(diǎn),兩條途徑再挑選。 列表描點(diǎn)后連線,平移規(guī)律記心間。 左加右減括號(hào)內(nèi),號(hào)外上加下要減。 二次方程零換y,就得到二次函數(shù)。 圖像叫做拋物線,定義域全體實(shí)數(shù)。 A定開口及大小,開口向上是正數(shù)。 絕對(duì)值大開口小,開口向下A負(fù)數(shù)。 拋物線有對(duì)稱軸,增減特性可看圖。 線軸交點(diǎn)叫頂點(diǎn),頂點(diǎn)縱標(biāo)最值出。 如果要畫拋物線,描點(diǎn)平移
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 五官科住院部制度
- 東莞消防安全制度
- 品德交通安全伴我行課件
- 2026年昭平縣公安局公開招聘警務(wù)輔助人員備考題庫及一套答案詳解
- 東莞市公安局橫瀝分局2025年第5批警務(wù)輔助人員招聘備考題庫及答案詳解參考
- 東莞市公安局水上分局麻涌水上派出所2025年第1批警務(wù)輔助人員招聘備考題庫及1套參考答案詳解
- 中共啟東市委組織部2026年校園招聘備考題庫及答案詳解1套
- 2025至2030中國抗結(jié)核藥物市場供需狀況及未來趨勢(shì)預(yù)測報(bào)告
- 2026中國汽車熱交換器行業(yè)運(yùn)營態(tài)勢(shì)與應(yīng)用前景預(yù)測報(bào)告
- 2025至2030教育云計(jì)算服務(wù)模式創(chuàng)新與行業(yè)應(yīng)用深度研究報(bào)告
- 2026年酒店服務(wù)員考試題及答案
- 普速鐵路行車技術(shù)管理課件 項(xiàng)目二 行車組織基礎(chǔ)
- 《(2025年)中國類風(fēng)濕關(guān)節(jié)炎診療指南》解讀課件
- 炎德·英才·名校聯(lián)考聯(lián)合體2026屆高三年級(jí)1月聯(lián)考語文試卷(含答及解析)
- 麥當(dāng)勞行業(yè)背景分析報(bào)告
- 中國心理行業(yè)分析報(bào)告
- 2025至2030中國生物芯片(微陣列和和微流控)行業(yè)運(yùn)營態(tài)勢(shì)與投資前景調(diào)查研究報(bào)告
- 結(jié)核性支氣管狹窄的診治及護(hù)理
- 2025年鐵嶺衛(wèi)生職業(yè)學(xué)院單招職業(yè)適應(yīng)性考試模擬測試卷附答案
- 急腹癥的識(shí)別與護(hù)理
- 2025年新能源電力系統(tǒng)仿真技術(shù)及應(yīng)用研究報(bào)告
評(píng)論
0/150
提交評(píng)論