版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
化工原理
PrinciplesofChemicalIndustry化工原理HeattransfertofluidswithoutphasechangeHeattransfertofluidswithouRegimesofheattransferinfluidsAfluidbeingheatedorcooledmaybeflowingindifferentflowpatterns.Also,thefluidmaybeflowinginforcedornaturalconvection.RegimesofheattransferinflAtordinaryvelocitiestheheatgeneratedfromfluidfrictionisnegligibleincomparisonwiththeheattransferredbetweenthefluids.AtordinaryvelocitiestheBecausethesituationsofflowattheentrancetoatubediffersfromthosewelldownstreamfromtheentrance,thevelocityfieldandassociatedtemperaturefieldmaydependonthedistancefromthetubeentranceBecausethesituationsofflowThepropertiesofthefluid-viscosity,thermalconductivity,specificheat,anddensityareimportantparametersinheattransfer.Eachofthese,especiallyviscosity,istemperature-dependent.Thepropertiesofthefluid-viHeattransferbyforcedconvectioninturbulentflowPerhapsthemostimportantsituationinheattransferistheheatflowinastreamoffluidinturbulentflow.HeattransferbyforcedconvecSincetherateofheattransferisgreaterinturbulentflowthaninlaminarflow,mostequipmentisoperatedintheturbulentrange.Sincetherateofheattran
Adimensionalanalysisoftheheatflowtoafluidinturbulentflowthroughastraightpipeyieldsdimensionlessrelations.
(12-27)AdimensionalanalysisoftThethreegroupsinEq(12-27)arerecognizedastheNusselt(Nu),Reynolds(Re),andPrandtl(Pr)numbersrespectively.ThethreegroupsinEq(12-2
TheNusseltnumberforheattransferfromafluidtoapipeorfromapipetoafluidequalsthefilmcoefficientmultipliedbyd/kThefilmcoefficienthistheaveragevalueoverthelengthofthepipeTheNusseltnumberforheat
PrandtlnumberPristheratioofthediffusivityofmomentumμ/ρ
tothethermaldiffusivityk/ρcpPrandtlnumberPristheraThePrandtlnumberofagasisusuallycloseto1(0.69forair,1.06forsteam).ThePrandtlnumberofgasesisalmostindependentoftemperaturebecausetheviscosityandthermalconductivitybothincreasewithtemperatureataboutthesamerate.ThePrandtlnumberofagasEmpiricalequationForheattransfertoandfromfluidsthatfollowthepower-lawrelation,thedimensionlessrelationbecomesTousethedimensionlessrelation,theconstantcandindexm,nmustbeknown.EmpiricalequationForheattra
Arecognizedempiricalcorrelation,forlongtubeswithsharp-edgedentrances,istheDittus-Boelterequation
Wherenis0.4whenthefluidisbeingheatedand0.3whenitisbeingcooled.Arecognizedempiricalcorr
AbetterrelationshipforturbulentflowisknownastheSieder-Tateequation
(12-32)AbetterrelationshipfortEquation(12-32)shouldnotbeusedforReynoldsnumbersbelow6000orformoltenmetals,whichhaveabnormallylowPrandtlnumber.Equation(12-32)shouldnotEffectoftubelengthNearthetubeentrance,wherethetemperaturegradientsarestillforming,thelocalcoefficienthxisgreaterthanhforfullydevelopedflow.EffectoftubelengthNeartheInentrance,hxisquitelarge,buthxvaluedropsrapidlytowardhinacomparativelyshortlengthoftube.Averagevalueofhiinturbulentflow.
Sincethetemperatureofthefluidchangesfromoneendofthetubetotheotherandfluidpropertiesμ
,cpandkareallfunctionoftemperature,thelocalvalueofhialsovariesfrompointtopointalongthetube.
Inentrance,hxisquitelaTherelationoflocalheattransfercoefficienthiandlongtubehisasfollowsWhenLapproachesinfinite,hiisclosetothehoflongtube.TherelationoflocalheattraForlaminarflow,therelationofNuandPrandReis(12.25)Forlaminarflow,therelationForgasestheeffectoftemperatureonhiissmall.Theincreaseinconductivityandheatcapacitywithtemperatureoffsettheriseinviscosity,givingaslightincreaseinhi.ForgasesForliquids
theeffectoftemperatureismuchgreaterthanforgasesbecauseoftherapiddecreaseinviscositywithrisingtemperature.ForliquidsTheeffectsofk,cp,andμinEq(12-36)allactinthesamedirection,buttheincreaseinhiwithtemperatureisduemainlytotheeffectoftemperatureonviscosity.Theeffectsofk,cp,andμInpractice,anaveragevalueofhiiscalculatedandusedasaconstantincalculatingtheoverallcoefficientU.Inpractice,anaveragevaltheaveragevalueofhiiscomputedbyevaluatingthefluidpropertiesk,cp,andμataveragefluidtemperature,definedasthearithmeticmeanbetweentheinletandoutlettemperatures.theaveragevalueofhiisEstimationofwalltemperature
tw
TheestimationoftwrequiresaniterativecalculationbasedontheresistanceequationEstimationofwalltemperature
TodeterminetwthewallresistancecanusuallybeneglectedTodeterminetwthewallrSubstitutingUo,gives
(12-38)SubstitutingUo,givesCrosssectionsotherthancircularTouseEq(12-30)forcrosssectionotherthancircularitisonlynecessarytoreplacethediameterinbothReynoldsandNusseltnumberbytheequivalentdiameterde.Crosssectionsotherthancirc
de
isdefinedas4timesthehydraulicradiusrH.Themethodisthesameasthatusedincalculatingfrictionloss.deisdefinedas4timesthHeattransferintransitionregionbetweenlaminarandturbulentflowEquation(12-32)appliesonlyforReynoldsnumbersgreaterthan6000.TherangeofReynoldsnumbersbetween2100and6000iscalledthetransitionregion,andnosimpleequationapplieshere.Heattransferintransitionre
Agraphicalmethodthereforeisused.ThemethodisbasedonacommonplotoftheColburnjfactorversusRe,withlinesofconstantvalueofL/DAgraphicalmethodtherefor
TheheattransfercoefficientcanbecalculatedbyfollowingequationTheheattransfercoefficieHeatingandcoolingoffluidsinforcedconvectionoutsidetubesThemechanismofheatflowinforcedconvectionoutsidetubesdiffersfromthatofflowinsidetubes.Thelocalvalueofheat-transfercoefficientvariesfrompointtopointaroundcircumferenceinforcedconvectionoutsidetube.HeatingandcoolingoffluidsInFig12.5,thelocalvalueoftheNusseltnumberisplottedradiallyforallpointsaroundcircumferenceofthetube.InFig12.5,thelocalvaluNuθismaximumatthefrontandbackofthetubeandaminimumatthesides.Inpractice,thevariationsinthelocalcoefficientareoftennoimportance,andaveragevaluesbasedontheentirecircumferenceareused.NuθismaximumatthefrontafluidsflowingnormaltoasingletubeThevariablesaffectingthecoefficientofheattransfertoafluidinforcedconvectionoutsideatubeareDo,theoutsidediameterofthetube;cp,μ,andk,thespecificheat,theviscosity,andthermalconductivity,respectively,ofthefluid;andG,themassvelocity.fluidsflowingnormaltoasinDimensionalanalysisgivesNusseltnumberisonlyafunctionoftheReynoldsnumber.DimensionalanalysisgivesTheexperimentaldataforairareplottedinthiswayinFig12.6TheexperimentaldataforairForheatingandcoolingliquidsflowingnormaltosinglecylindersthefollowingequationisusedForheatingandcoolingliquidNaturalconvectionConsiderahot,verticalplateincontactwiththeairinaroom.Thedensityoftheheatedairimmediatelyadjacenttotheplateislessthanthatoftheunheatedairatadistancefromtheplate,andthebuoyancyofthehotaircausesanunbalancebetweentheverticallayersofairofdifferingdensity.NaturalconvectionConsiderTemperaturedifferencebetweenthesurfaceofplateandtheaircausesaheattransfer.Naturalconvectioninliquidfollowsthesamepattern.Thebuoyancyofheatedliquidlayersnearahotsurfacegeneratesconvectioncurrentsjustasingases.TemperaturedifferencebetwForsinglehorizontalcylinders,theheattransfercoefficientcanbecorrelatedbyequationcontainingthreedimensionlessgroupsNu=f(Pr,Gr)Gr:GrashofnumberPr:PrandtlnumberForsinglehorizontalcylind(12-67)Thecoefficientofthermalexpansionβ
isapropertyoffluid(12-67)ThecoefficientoftherFig12.8showsarelationship,whichsatisfactorilycorrelatesexperimentaldataforheattransferfromasinglehorizontalcylindertoliquidsorgasesFig12.8showsarelationsh化工原理英文教材傳熱無相變傳熱Heattransfertofluidswithoutphasechange課件FormagnitudesoflogGrProf4ormore,thelineofFig12.8followscloselytheempiricalequationFormagnitudesoflogGrPrNaturalconvectiontoairfromverticalshapesandhorizontalplatesEquationsforheattransferinnaturalconvectionbetweenfluidsandsolidsofdefinitegeometricshapeareoftheform(12-73)ValuesoftheconstantsbandnforvariousconditionsaregiveninTable12.4NaturalconvectiontoairfromAdoublepipeheatexchangerisusedtocondensethesaturatedtoluenevapor(2000kg/h)intosaturatedliquid.Thecondensationtemperatureandlatentheatoftolueneare110oCand363kJ/kg,respectively.Thecoldwaterat20oC(inlettemperature)and5000kg/hgoesthroughthepipe(di=50mm)fullyturbulently.Iftheindividualheattransfercoefficienthiofwatersideis2100w/(m2K),andheatresistancesofpipewallaswellastoluenesidearemuchlargerthanthatofwaterside(thismeansbothresistancescanbeignored),find:Outlettemperatureofcoldwater,inoC.Pipelengthofexchanger.Inorderformassflowrateoftoluenetobedouble,ifthemassflowrateofcoldwateratthesameinlettemperature(20oC)isdouble,whatisthepipelengthofnewexchangertoberequired?AdoublepipeheatexchangeriSolution:Heatbalanceq=m1=m2Cp(Tcb-Tca)2000363=50004.19(Tcb-20)(1)OutlettemperatureofcoldwaterTcb=54.65oC(2)U=h(fromtheproblem)?T1=110-54.65=55.35,?T2=110-20=90?T=(?T1+?T2)/2=72.68(since?T2/?T1<2)L=q/(Ud?T)=20003631000/3600/(21000.0572.68)=8.42m(3)q’=2qm1=2m2Cp(T’cb-Tca)OutlettemperatureofcoldwaterTcb=54.65oC?T’=(?T1+?T2)/2=72.68Fullydevelopedturbulentflow,hRe0.8~m0.8~u0.8h’/h=20.8,h’=1.74hq’=1.74hdL’?T’=2m1q=hdL?T=m1L’/L=2/1.74soL’=28.42/1.74=9.68mSolution:Heatbalanceq=m1=mAsinglepass(1-1)shell-tubeexchangerismadeofmany252.5mmtubes.Organicsolution,u=0.5m/s,m(massflowrate)=15000kg/h,Cp=1.76kJ/kg.oC,=858kg/m3,passesthroughthetube.Thetemperaturechangesfrom20to50oC.Thesaturatedvaporat130oCcondensestothesaturatedwater,whichgoesthroughtheshell.Theindividualheattransfercoefficientshiandhointhepipeandshellare700andis10000W/m2oC,respectively.Thethermalconductivitykofpipewallis45W/m.oC.Iftheheatlossandresistancesoffoulingcanbeignored,find(1)OverallheattransfercoefficientUo.(basedonoutsidetubearea)andLMTD.(2)Heattransferarea,numberofpipesandlengthofpipes.Asinglepass(1-1)shell-tube化工原理英文教材傳熱無相變傳熱Heattransfertofluidswithoutphasechange課件化工原理
PrinciplesofChemicalIndustry化工原理HeattransfertofluidswithoutphasechangeHeattransfertofluidswithouRegimesofheattransferinfluidsAfluidbeingheatedorcooledmaybeflowingindifferentflowpatterns.Also,thefluidmaybeflowinginforcedornaturalconvection.RegimesofheattransferinflAtordinaryvelocitiestheheatgeneratedfromfluidfrictionisnegligibleincomparisonwiththeheattransferredbetweenthefluids.AtordinaryvelocitiestheBecausethesituationsofflowattheentrancetoatubediffersfromthosewelldownstreamfromtheentrance,thevelocityfieldandassociatedtemperaturefieldmaydependonthedistancefromthetubeentranceBecausethesituationsofflowThepropertiesofthefluid-viscosity,thermalconductivity,specificheat,anddensityareimportantparametersinheattransfer.Eachofthese,especiallyviscosity,istemperature-dependent.Thepropertiesofthefluid-viHeattransferbyforcedconvectioninturbulentflowPerhapsthemostimportantsituationinheattransferistheheatflowinastreamoffluidinturbulentflow.HeattransferbyforcedconvecSincetherateofheattransferisgreaterinturbulentflowthaninlaminarflow,mostequipmentisoperatedintheturbulentrange.Sincetherateofheattran
Adimensionalanalysisoftheheatflowtoafluidinturbulentflowthroughastraightpipeyieldsdimensionlessrelations.
(12-27)AdimensionalanalysisoftThethreegroupsinEq(12-27)arerecognizedastheNusselt(Nu),Reynolds(Re),andPrandtl(Pr)numbersrespectively.ThethreegroupsinEq(12-2
TheNusseltnumberforheattransferfromafluidtoapipeorfromapipetoafluidequalsthefilmcoefficientmultipliedbyd/kThefilmcoefficienthistheaveragevalueoverthelengthofthepipeTheNusseltnumberforheat
PrandtlnumberPristheratioofthediffusivityofmomentumμ/ρ
tothethermaldiffusivityk/ρcpPrandtlnumberPristheraThePrandtlnumberofagasisusuallycloseto1(0.69forair,1.06forsteam).ThePrandtlnumberofgasesisalmostindependentoftemperaturebecausetheviscosityandthermalconductivitybothincreasewithtemperatureataboutthesamerate.ThePrandtlnumberofagasEmpiricalequationForheattransfertoandfromfluidsthatfollowthepower-lawrelation,thedimensionlessrelationbecomesTousethedimensionlessrelation,theconstantcandindexm,nmustbeknown.EmpiricalequationForheattra
Arecognizedempiricalcorrelation,forlongtubeswithsharp-edgedentrances,istheDittus-Boelterequation
Wherenis0.4whenthefluidisbeingheatedand0.3whenitisbeingcooled.Arecognizedempiricalcorr
AbetterrelationshipforturbulentflowisknownastheSieder-Tateequation
(12-32)AbetterrelationshipfortEquation(12-32)shouldnotbeusedforReynoldsnumbersbelow6000orformoltenmetals,whichhaveabnormallylowPrandtlnumber.Equation(12-32)shouldnotEffectoftubelengthNearthetubeentrance,wherethetemperaturegradientsarestillforming,thelocalcoefficienthxisgreaterthanhforfullydevelopedflow.EffectoftubelengthNeartheInentrance,hxisquitelarge,buthxvaluedropsrapidlytowardhinacomparativelyshortlengthoftube.Averagevalueofhiinturbulentflow.
Sincethetemperatureofthefluidchangesfromoneendofthetubetotheotherandfluidpropertiesμ
,cpandkareallfunctionoftemperature,thelocalvalueofhialsovariesfrompointtopointalongthetube.
Inentrance,hxisquitelaTherelationoflocalheattransfercoefficienthiandlongtubehisasfollowsWhenLapproachesinfinite,hiisclosetothehoflongtube.TherelationoflocalheattraForlaminarflow,therelationofNuandPrandReis(12.25)Forlaminarflow,therelationForgasestheeffectoftemperatureonhiissmall.Theincreaseinconductivityandheatcapacitywithtemperatureoffsettheriseinviscosity,givingaslightincreaseinhi.ForgasesForliquids
theeffectoftemperatureismuchgreaterthanforgasesbecauseoftherapiddecreaseinviscositywithrisingtemperature.ForliquidsTheeffectsofk,cp,andμinEq(12-36)allactinthesamedirection,buttheincreaseinhiwithtemperatureisduemainlytotheeffectoftemperatureonviscosity.Theeffectsofk,cp,andμInpractice,anaveragevalueofhiiscalculatedandusedasaconstantincalculatingtheoverallcoefficientU.Inpractice,anaveragevaltheaveragevalueofhiiscomputedbyevaluatingthefluidpropertiesk,cp,andμataveragefluidtemperature,definedasthearithmeticmeanbetweentheinletandoutlettemperatures.theaveragevalueofhiisEstimationofwalltemperature
tw
TheestimationoftwrequiresaniterativecalculationbasedontheresistanceequationEstimationofwalltemperature
TodeterminetwthewallresistancecanusuallybeneglectedTodeterminetwthewallrSubstitutingUo,gives
(12-38)SubstitutingUo,givesCrosssectionsotherthancircularTouseEq(12-30)forcrosssectionotherthancircularitisonlynecessarytoreplacethediameterinbothReynoldsandNusseltnumberbytheequivalentdiameterde.Crosssectionsotherthancirc
de
isdefinedas4timesthehydraulicradiusrH.Themethodisthesameasthatusedincalculatingfrictionloss.deisdefinedas4timesthHeattransferintransitionregionbetweenlaminarandturbulentflowEquation(12-32)appliesonlyforReynoldsnumbersgreaterthan6000.TherangeofReynoldsnumbersbetween2100and6000iscalledthetransitionregion,andnosimpleequationapplieshere.Heattransferintransitionre
Agraphicalmethodthereforeisused.ThemethodisbasedonacommonplotoftheColburnjfactorversusRe,withlinesofconstantvalueofL/DAgraphicalmethodtherefor
TheheattransfercoefficientcanbecalculatedbyfollowingequationTheheattransfercoefficieHeatingandcoolingoffluidsinforcedconvectionoutsidetubesThemechanismofheatflowinforcedconvectionoutsidetubesdiffersfromthatofflowinsidetubes.Thelocalvalueofheat-transfercoefficientvariesfrompointtopointaroundcircumferenceinforcedconvectionoutsidetube.HeatingandcoolingoffluidsInFig12.5,thelocalvalueoftheNusseltnumberisplottedradiallyforallpointsaroundcircumferenceofthetube.InFig12.5,thelocalvaluNuθismaximumatthefrontandbackofthetubeandaminimumatthesides.Inpractice,thevariationsinthelocalcoefficientareoftennoimportance,andaveragevaluesbasedontheentirecircumferenceareused.NuθismaximumatthefrontafluidsflowingnormaltoasingletubeThevariablesaffectingthecoefficientofheattransfertoafluidinforcedconvectionoutsideatubeareDo,theoutsidediameterofthetube;cp,μ,andk,thespecificheat,theviscosity,andthermalconductivity,respectively,ofthefluid;andG,themassvelocity.fluidsflowingnormaltoasinDimensionalanalysisgivesNusseltnumberisonlyafunctionoftheReynoldsnumber.DimensionalanalysisgivesTheexperimentaldataforairareplottedinthiswayinFig12.6TheexperimentaldataforairForheatingandcoolingliquidsflowingnormaltosinglecylindersthefollowingequationisusedForheatingandcoolingliquidNaturalconvectionConsiderahot,verticalplateincontactwiththeairinaroom.Thedensityoftheheatedairimmediatelyadjacenttotheplateislessthanthatoftheunheatedairatadistancefromtheplate,andthebuoyancyofthehotaircausesanunbalancebetweentheverticallayersofairofdifferingdensity.NaturalconvectionConsiderTemperaturedifferencebetweenthesurfaceofplateandtheaircausesaheattransfer.Naturalconvectioninliquidfollowsthesamepattern.Thebuoyancyofheatedliquidlayersnearahotsurfacegeneratesconvectioncurrentsjustasingases.TemperaturedifferencebetwForsinglehorizontalcylinders,theheattransfercoefficientcanbecorrelatedbyequationcontainingthreedimensionlessgroupsNu=f(Pr,Gr)Gr:GrashofnumberPr:PrandtlnumberForsinglehorizontalcylind(12-67)Thecoefficientofthermalexpansionβ
isapropertyoffluid(12-67)ThecoefficientoftherFig12.8showsarelationship,whichsatisfactorilycorrelatesexperimentaldataforheattransferfromasinglehorizontalcylindertoliquidsorgasesFig12.8showsarelationsh化工原理英文教材傳熱無相變傳熱Heattransfertofluidswithoutphasechange課件FormagnitudesoflogGrProf4ormore,thelineofFig12.8followscloselytheempiricalequationFormagnitudesoflogGrPrNaturalconvectiontoairfromverticalshapesandhorizontalplatesEquationsforheattransferinnaturalconvectionbetweenfluidsandsolidsofdefinitegeometricshapeareoftheform
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 礦業(yè)立井施工方案(3篇)
- 夜場6s管理制度(3篇)
- 特產特色活動策劃方案(3篇)
- 改造超市施工方案(3篇)
- 2026年淄博臨淄區(qū)事業(yè)單位公開招聘綜合類崗位人員(21人)備考考試題庫及答案解析
- 2026年杭州市拱墅區(qū)人民政府武林街道辦事處公開招聘編外工作人員4人備考考試題庫及答案解析
- 2026年蕪湖市勞動保障人力資源有限公司人才儲備考試參考試題及答案解析
- 2026福建龍巖新羅區(qū)巖山中心幼兒園教師招聘1人參考考試題庫及答案解析
- 2026年福建寧德古田縣消防救援大隊政府專職消防員招聘10人備考考試題庫及答案解析
- 雙眼皮整形術后長期護理要點
- 生產安全事故調查分析規(guī)則
- 2021??低旸S-AT1000S超容量系列網絡存儲設備用戶手冊
- 水利水電工程單元工程施工質量驗收標準第8部分:安全監(jiān)測工程
- 【政治】2025年高考真題政治-海南卷(解析版-1)
- DB50∕T 1571-2024 智能網聯汽車自動駕駛功能測試規(guī)范
- 低蛋白血癥患者的護理講課件
- 建設工程招投標培訓課件
- 健康骨骼課件
- 水泵電機年度維修項目方案投標文件(技術方案)
- 2024-2025學年江西省南昌市高二上學期期末聯考數學試卷(含答案)
- GB/T 6075.6-2024機械振動在非旋轉部件上測量評價機器的振動第6部分:功率大于100 kW的往復式機器
評論
0/150
提交評論