版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學(xué)年高一上數(shù)學(xué)期末模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知,,則“使得”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分又不必要條件2.同時擲兩枚骰子,所得點數(shù)之和為的概率為A. B.C. D.3.已知函數(shù)的圖象如圖所示,則函數(shù)的圖象為A.B.C.D.4.已知三條不重合的直線,,,兩個不重合的平面,,有下列四個命題:①若,,則;②若,,且,則;③若,,,,則;④若,,,,則.其中正確命題的個數(shù)為A. B.C. D.5.定義在上的連續(xù)函數(shù)有下列的對應(yīng)值表:01234560-1.2-0.22.1-23.22.4則下列說法正確是A.函數(shù)在上有4個零點 B.函數(shù)在上只有3個零點C.函數(shù)在上最多有4個零點 D.函數(shù)在上至少有4個零點6.已知函數(shù),若方程有五個不同的實數(shù)根,則實數(shù)的取值范圍為()A. B.C. D.7.已知,則的值為()A.3 B.6C.9 D.8.已知函數(shù),則()A. B.C. D.9.已知定義在上的偶函數(shù),且當(dāng)時,單調(diào)遞減,則關(guān)于x的不等式的解集是()A. B.C. D.10.已知集合A=,B=,則A.AB= B.ABC.AB D.AB=R二、填空題:本大題共6小題,每小題5分,共30分。11.《九章算術(shù)》是我國古代內(nèi)容極為豐富的數(shù)學(xué)名著,其中有這樣一個問題:“今有宛田,下周三十步,徑十六步.問為田幾何?”其意思為:“有一塊扇形的田,弧長為30步,其所在圓的直徑為16步,問這塊田的面積是多少平方步?”該問題的答案為___________平方步.12.寫出一個最小正周期為2的奇函數(shù)________13.已知直線過點.若直線在兩坐標(biāo)軸上的截距相等,求直線的方程______.14._____.15.計算_____________.16.若正數(shù)x,y滿足,則的最小值是_________三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.在①;②關(guān)于x的不等式的解集是這兩個條件中任選一個,補充在下面的問題(1)中并解答,若同時選擇兩個條件作答,以第一個作答計分(1)已知______,求關(guān)于的不等式的解集;(2)在(1)的條件下,若非空集合,,求實數(shù)的取值范圍18.設(shè)a>0,且a≠1,解關(guān)于x的不等式19.已知函數(shù)(其中為常數(shù))的圖象經(jīng)過兩點.(1)判斷并證明函數(shù)的奇偶性;(2)證明函數(shù)在區(qū)間上單調(diào)遞增.20.某鎮(zhèn)在政府“精準(zhǔn)扶貧”的政策指引下,充分利用自身資源,大力發(fā)展養(yǎng)殖業(yè),以增加收入,政府計劃共投入72萬元,全部用于甲、乙兩個合作社,每個合作社至少要投入15萬元,其中甲合作社養(yǎng)魚,乙合作社養(yǎng)雞,在對市場進行調(diào)研分析發(fā)現(xiàn)養(yǎng)魚的收益、養(yǎng)雞的收益與投入(單位:萬元)滿足,.設(shè)甲合作社的投入為(單位:萬元),兩個合作社的總收益為(單位:萬元).(1)當(dāng)甲合作社的投入為25萬元時,求兩個合作社的總收益;(2)如何安排甲、乙兩個合作社的投入,才能使總收益最大,最大總收益為多少萬元?21.已知α是第二象限角,且tanα=-(1)求sinα,cos(2)求sinα-5π+
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】依據(jù)子集的定義進行判斷即可解決二者間的邏輯關(guān)系.【詳解】若使得,則有成立;若,則有使得成立.則“使得”是“”的充要條件故選:C2、A【解析】本題是一個古典概型,試驗發(fā)生包含的事件是同時擲兩枚骰子,共有6×6種結(jié)果,而滿足條件的事件是兩個點數(shù)之和是5,列舉出有4種結(jié)果,根據(jù)概率公式得到結(jié)果.【詳解】由題意知,本題是一個古典概型,試驗發(fā)生包含的事件是同時擲兩枚骰子,共有6×6=36種結(jié)果,而滿足條件的事件是兩個點數(shù)之和是5,列舉出有(1,4)(2,3)(3,2)(4,1),共有4種結(jié)果,根據(jù)古典概型概率公式得到P=.【點睛】古典概型要求能夠列舉出所有事件和滿足條件的事件發(fā)生的個數(shù),本題可以列舉出所有事件,概率問題同其他的知識點結(jié)合在一起,實際上是以概率問題為載體3、A【解析】根據(jù)函數(shù)的圖象,可得a,b的范圍,結(jié)合指數(shù)函數(shù)的性質(zhì),即可得函數(shù)的圖象.【詳解】解:通過函數(shù)的圖象可知:,當(dāng)時,可得,即.函數(shù)是遞增函數(shù);排除C,D.當(dāng)時,可得,,,故選A【點睛】本題考查了指數(shù)函數(shù)的圖象和性質(zhì),屬于基礎(chǔ)題.4、B【解析】當(dāng)在平面內(nèi)時,,①錯誤;兩個平面的垂線平行,且兩個平面不重合,則兩個平面平行,②正確;③中,當(dāng)時,平面可能相交,③錯誤;④正確.故選B.考點:空間線面位置關(guān)系.5、D【解析】由表格數(shù)據(jù)可知,連續(xù)函數(shù)滿足,根據(jù)零點存在定理可得,在區(qū)間上,至少各有一個零點,所以函數(shù)在上至少有個零點,故選D.6、A【解析】由可得或,數(shù)形結(jié)合可方程只有解,則直線與曲線有個交點,結(jié)合圖象可得出實數(shù)的取值范圍.【詳解】由可得或,當(dāng)時,;當(dāng)時,.作出函數(shù)、、圖象如下圖所示:由圖可知,直線與曲線有個交點,即方程只有解,所以,方程有解,即直線與曲線有個交點,則.故選:A.7、A【解析】直接由對數(shù)與指數(shù)的互化公式求解即可【詳解】解:由,得,故選:A8、A【解析】由題中條件,推導(dǎo)出,,,,由此能求出的值【詳解】解:函數(shù),,,,,故選A【點睛】本題考查函數(shù)值的求法,考查函數(shù)性質(zhì)等基礎(chǔ)知識,考查運算求解能力,是基礎(chǔ)題9、D【解析】由偶函數(shù)的性質(zhì)求得,利用偶函數(shù)的性質(zhì)化不等式中自變量到上,然后由單調(diào)性轉(zhuǎn)化求解【詳解】解:由題意,,的定義域,時,遞減,又是偶函數(shù),因此不等式轉(zhuǎn)化為,,,解得故選:D10、A【解析】由得,所以,選A點睛:對于集合的交、并、補運算問題,應(yīng)先把集合化簡再計算,常常借助數(shù)軸或韋恩圖處理二、填空題:本大題共6小題,每小題5分,共30分。11、120【解析】利用扇形的面積公式求解.【詳解】由題意得:扇形弧長為30,半徑為8,所以扇形的面積為:,故答案為:12012、【解析】根據(jù)奇函數(shù)性質(zhì)可考慮正弦型函數(shù),,再利用周期計算,選擇一個作答即可.【詳解】由最小正周期為2,可考慮三角函數(shù)中的正弦型函數(shù),,滿足,即是奇函數(shù);根據(jù)最小正周期,可得.故函數(shù)可以是中任一個,可取.故答案為:.13、或【解析】根據(jù)已知條件,分直線過原點,直線不過原點兩種情況討論,即可求解【詳解】解:當(dāng)直線過原點時,斜率為,由點斜式求得直線的方程是,即,當(dāng)直線不過原點時,設(shè)直線的方程為,把點代入方程可得,故直線的方程是,綜上所述,所求直線的方程為或故答案為:或.14、【解析】利用誘導(dǎo)公式變形,再由兩角和的余弦求解【詳解】解:,故答案為【點睛】本題考查誘導(dǎo)公式的應(yīng)用,考查兩角和的余弦,是基礎(chǔ)題15、【解析】將所給式子通分后進行三角變換可得結(jié)果【詳解】由題意得故答案為:【點睛】易錯點睛:本題考查三角恒等化簡,本題的關(guān)鍵是通分后用正弦的差角公式,在由化成時注意角的順序,這是容易出錯的地方,考查運算能力,屬于中檔題.16、##【解析】由基本不等式結(jié)合得出最值.【詳解】(當(dāng)且僅當(dāng)時,等號成立),即最小值為.故答案為:三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)條件選擇見解析,或(2)【解析】(1)若選①,分和,求得a,再利用一元二次不等式的解法求解;若選②,根據(jù)不等式的解集為,求得a,b,再利用一元二次不等式的解法求解;(2)由,得到求解;【小問1詳解】解:若選①,若,解得,不符合條件若,解得,則符合條件將代入不等式并整理得,解得或,故或若選②,因為不等式的解集為,所以,解得將代入不等式整理得,解得或故或【小問2詳解】∵,∴,又∵,∴或,∴或,∴18、當(dāng)時,不等式的解集為;當(dāng)時,不等式的解集為【解析】對進行分類討論,結(jié)合指數(shù)函數(shù)的單調(diào)性求得不等式的解集.【詳解】當(dāng)時,在上遞減,所以,即,解得,即不等式的解集為.當(dāng)時,在上遞增,所以,即,解得或,即不等式的解集為.19、(1)見解析;(2)見解析.【解析】⑴根據(jù)函數(shù)奇偶性的定義判斷并證明函數(shù)的奇偶性;⑵根據(jù)函數(shù)單調(diào)性的定義證明即可;解析:(1)解:∵函數(shù)的圖象經(jīng)過兩點∴解得∴.判斷:函數(shù)是奇函數(shù)證明:函數(shù)的定義域,∵對于任意,,∴函數(shù)是奇函數(shù).(2)證明:任取,則∵,∴,∴.∴在區(qū)間上單調(diào)遞增.20、(1)88.5萬元(2)該公司在甲合作社投入16萬元,在乙合作社投入56萬元,總收益最大,最大總收益為89萬元.【解析】(1)先確定甲乙合作社投入量,再分別代入對應(yīng)收益函數(shù),最后求和得結(jié)果,(2)先根據(jù)甲收益函數(shù),分類討論,再根據(jù)對應(yīng)函數(shù)單調(diào)性確定最值取法,最后比較大小確定最大值【詳解】解:(1)當(dāng)甲合作社投入為25萬元時,乙合作社投入為47萬元,此時兩個個合作社的總收益為:(萬元)(2)甲合作社的投入為萬元,則乙合作社的投入為萬元,當(dāng)時,則,.令,得,則總收益為,顯然當(dāng)時,函數(shù)取得最大值,即此時甲投入16萬元,乙投入56萬元時,總收益最大,最大收益為89萬元
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 車隊長崗位安全培訓(xùn)通知課件
- 車隊安全培訓(xùn)新聞報道課件
- 垂徑定理及其推論提高試題
- 《滑輪和滑輪組》物理授課課件
- 2026年某某項目安全生產(chǎn)自查自糾報告
- 銀行客戶關(guān)系維護制度
- 車間生產(chǎn)安全培訓(xùn)插排課件
- 2026年電力系統(tǒng)工作總結(jié)常用版(二篇)
- 車間安全線路培訓(xùn)記錄課件
- 機電工程管理與實務(wù)二級建造師考試試卷及答案指導(dǎo)
- 快遞行業(yè)運營部年度工作總結(jié)
- 《蘇教版六年級》數(shù)學(xué)上冊期末總復(fù)習(xí)課件
- 上海市二級甲等綜合醫(yī)院評審標(biāo)準(zhǔn)(2024版)
- 油漆班組安全晨會(班前會)
- 消費類半固態(tài)電池項目可行性研究報告
- 山東省濟南市2024年1月高二上學(xué)期學(xué)情期末檢測英語試題含解析
- 口腔門診醫(yī)療質(zhì)控培訓(xùn)
- (正式版)JBT 9229-2024 剪叉式升降工作平臺
- HGT4134-2022 工業(yè)聚乙二醇PEG
- 小學(xué)教職工代表大會提案表
- ESC2023年心臟起搏器和心臟再同步治療指南解讀
評論
0/150
提交評論