忻州一中2022年高一數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測試題含解析_第1頁
忻州一中2022年高一數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測試題含解析_第2頁
忻州一中2022年高一數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測試題含解析_第3頁
忻州一中2022年高一數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測試題含解析_第4頁
忻州一中2022年高一數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022-2023學(xué)年高一上數(shù)學(xué)期末模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(本大題共10小題;在每小題給出的四個選項中,只有一個選項符合題意,請將正確選項填涂在答題卡上.)1.《擲鐵餅者》取材于希臘的現(xiàn)實生活中的體育競技活動,刻畫的是一名強健的男子在擲鐵餅過程中最具有表現(xiàn)力的瞬間.現(xiàn)在把擲鐵餅者張開的雙臂近似看成一張拉滿弦的“弓”,擲鐵餅者的手臂長約為米,肩寬約為米,“弓”所在圓的半徑約為1.25米,則擲鐵餅者雙手之間的距離約為()A.1.012米 B.1.768米C.2.043米 D.2.945米2.已知:,:,若是的必要不充分條件,則實數(shù)的取值范圍是()A. B.C. D.3.下列函數(shù)中,在區(qū)間單調(diào)遞增的是()A. B.C. D.4.已知集合,,則A∩B中元素的個數(shù)為()A.2 B.3C.4 D.55.過圓C:(x﹣2)2+(y﹣2)2=4的圓心,作直線分別交x,y正半軸于點A,B,△AOB被圓分成四部分(如圖),若這四部分圖形面積滿足SI+SⅣ=SⅡ+SⅢ,則這樣的直線AB有A.0條 B.1條C.2條 D.3條6.函數(shù)的圖像大致為()A. B.C. D.7.已知冪函數(shù)的圖象過點(2,),則的值為()A. B.C. D.8.已知函數(shù)f(x)=,若f(a)=f(b)=f(c)且a<b<c,則ab+bc+ac的取值范圍為()A. B.C. D.9.已知三個頂點的坐標分別為,,,則外接圓的標準方程為()A. B.C. D.10.若函數(shù)則下列說法錯誤的是()A.是奇函數(shù)B.若在定義域上單調(diào)遞減,則或C.當時,若,則D.若函數(shù)有2個零點,則二、填空題(本大題共5小題,請把答案填在答題卡中相應(yīng)題中橫線上)11.已知A(3,0),B(0,4),直線AB上一動點P(x,y),則xy的最大值是___.12.當時,函數(shù)的最大值為________.13.tan22°+tan23°+tan22°tan23°=_______14.下列命題中正確的是__________.(填上所有正確命題的序號)①若,,則;②若,,則;③若,,則;④若,,,,則15.給出下列命題:①函數(shù)是偶函數(shù);②方程是函數(shù)的圖象的一條對稱軸方程;③在銳角中,;④函數(shù)的最小正周期為;⑤函數(shù)的對稱中心是,,其中正確命題的序號是________.三、解答題(本大題共6小題.解答應(yīng)寫出文字說明,證明過程或演算步驟.)16.已知函數(shù)在一個周期內(nèi)的圖像經(jīng)過點和點,且的圖像有一條對稱軸為.(1)求的解析式及最小正周期;(2)求的單調(diào)遞增區(qū)間.17.已知向量,滿足,,且,的夾角為.(1)求;(2)若,求的值.18.函數(shù)的部分圖象如圖:(1)求解析式;(2)求函數(shù)的單調(diào)增區(qū)間.19.已知函數(shù),若同時滿足以下條件:①在D上單調(diào)遞減或單調(diào)遞增;②存在區(qū)間,使在上的值域是,那么稱為閉函數(shù)(1)求閉函數(shù)符合條件②的區(qū)間;(2)判斷函數(shù)是不是閉函數(shù)?若是請找出區(qū)間;若不是請說明理由;(3)若是閉函數(shù),求實數(shù)的取值范圍20.已知函數(shù)的圖象中相鄰兩條對稱軸之間的距離為,且直線是其圖象的一條對稱軸(1)求,的值;(2)在圖中畫出函數(shù)在區(qū)間上的圖象;(3)將函數(shù)的圖象上各點的橫坐標縮短為原來的(縱坐標不變),再把得到的圖象向左平移個單位,得到的圖象,求單調(diào)減區(qū)間.21.如圖,在四邊形中,,,,且.(Ⅰ)用表示;(Ⅱ)點在線段上,且,求的值.

參考答案一、選擇題(本大題共10小題;在每小題給出的四個選項中,只有一個選項符合題意,請將正確選項填涂在答題卡上.)1、B【解析】由題分析出這段弓所在弧長,結(jié)合弧長公式求出其所對圓心角,雙手之間的距離為其所對弦長【詳解】解:由題得:弓所在的弧長為:;所以其所對的圓心角;兩手之間的距離故選:B2、C【解析】求解不等式化簡集合,,再由題意可得,由此可得的取值范圍【詳解】解:由,即,解得或,所以或,,命題是命題的必要不充分條件,,則實數(shù)的取值范圍是故選:C3、B【解析】根據(jù)單調(diào)性依次判斷選項即可得到答案.【詳解】對選項A,區(qū)間有增有減,故A錯誤,對選項B,,令,,則,因為,在為增函數(shù),在為增函數(shù),所以在為增函數(shù),故B正確.對選項C,,,解得,所以,為減函數(shù),,為增函數(shù),故C錯誤.對選項D,在為減函數(shù),故D錯誤.故選:B4、B【解析】采用列舉法列舉出中元素的即可.【詳解】由題意,,故中元素的個數(shù)為3.故選:B【點晴】本題主要考查集合的交集運算,考查學(xué)生對交集定義的理解,是一道容易題.5、B【解析】數(shù)形結(jié)合分析出為定值,因此為定值,從而確定直線AB只有一條.【詳解】已知圓與軸,軸均相切,由已知條件得,第部分的面積是定值,所以為定值,即為定值,當直線繞著圓心C移動時,只有一個位置符合題意,即直線AB只有一條.故選:B【點睛】本題考查直線與圓的實際應(yīng)用,屬于中檔題.6、A【解析】先判斷函數(shù)為偶函數(shù)排除;再根據(jù)當時,,排除得到答案.【詳解】,偶函數(shù),排除;當時,,排除故選【點睛】本題考查了函數(shù)圖像的識別,通過函數(shù)的奇偶性和特殊函數(shù)點可以排除選項快速得到答案.7、A【解析】令冪函數(shù)且過(2,),即有,進而可求的值【詳解】令,由圖象過(2,)∴,可得故∴故選:A【點睛】本題考查了冪函數(shù),由冪函數(shù)的形式及其所過的定點求解析式,進而求出對應(yīng)函數(shù)值,屬于簡單題8、D【解析】畫出函數(shù)的圖象,根據(jù),,互不相等,且(a)(b)(c),我們令,我們易根據(jù)對數(shù)的運算性質(zhì),及,,的取值范圍得到的取值范圍【詳解】解:作出函數(shù)的圖象如圖,不妨設(shè),,,,,,由圖象可知,,則,解得,,則,解得,,的取值范圍為故選.【點睛】本題主要考查分段函數(shù)、對數(shù)的運算性質(zhì)以及利用數(shù)形結(jié)合解決問題的能力,解答的關(guān)鍵是圖象法的應(yīng)用,即利用函數(shù)的圖象交點研究方程的根的問題,屬于中檔題.9、C【解析】先判斷出是直角三角形,直接求出圓心和半徑,即可求解.【詳解】因為三個頂點的坐標分別為,,,所以,所以,所以是直角三角形,所以的外接圓是以線段為直徑的圓,所以圓心坐標為,半徑故所求圓的標準方程為故選:C10、D【解析】A利用奇偶性定義判斷;B根據(jù)函數(shù)的單調(diào)性,列出分段函數(shù)在分段區(qū)間的界點上函數(shù)值的不等關(guān)系求參數(shù)范圍即可;C利用函數(shù)單調(diào)性求解集;D將問題轉(zhuǎn)化為與直線的交點個數(shù)求參數(shù)a的范圍.【詳解】由題設(shè),當時有,則;當時有,則,故是奇函數(shù),A正確因為在定義域上單調(diào)遞減,所以,得a≤-4或a≥-1,B正確當a≥-1時,在定義域上單調(diào)遞減,由,得:x>-1且x≠0,C正確的零點個數(shù)即為與直線的交點個數(shù),由題意得,解得-3<a<-5+172,D錯誤故選:D二、填空題(本大題共5小題,請把答案填在答題卡中相應(yīng)題中橫線上)11、3【解析】直線AB的方程為+=1,又∵+≥2,即2≤1,當x>0,y>0時,當且僅當=,即x=,y=2時取等號,∴xy≤3,則xy的最大值是3.12、【解析】分子分母同除以,再利用基本不等式求解即可.【詳解】,,當且僅當時取等號,即函數(shù)的最大值為,故答案為:.13、1【解析】解:因為tan22°+tan23°+tan22°tan23°=tan(22°+23°)(1-tan22°tan23°)+tan22°tan23°=tan45°=114、③【解析】對于①,若,,則與可能異面、平行,故①錯誤;對于②,若,,則與可能平行、相交,故②錯誤;對于③,若,,則根據(jù)線面垂直的性質(zhì),可知,故③正確;對于④,根據(jù)面面平行的判定定理可知,還需添加相交,故④錯誤,故答案為③.【方法點晴】本題主要考查線面平行的判定與性質(zhì)、面面平行的性質(zhì)及線面垂直的性質(zhì),屬于難題.空間直線、平面平行或垂直等位置關(guān)系命題的真假判斷,常采用畫圖(尤其是畫長方體)、現(xiàn)實實物判斷法(如墻角、桌面等)、排除篩選法等;另外,若原命題不太容易判斷真假,可以考慮它的逆否命題,判斷它的逆否命題真假,原命題與逆否命題等價.15、①②③【解析】由誘導(dǎo)公式化簡得函數(shù),判斷①正確;求出函數(shù)的圖象的對稱軸(),當時,,判斷②正確;在銳角中,由化簡得到,判斷③正確;直接求出函數(shù)的最小正周期為,判斷④錯誤;直接求出函數(shù)的對稱中心是,判斷⑤錯誤.【詳解】①因為函數(shù),所以函數(shù)是偶函數(shù),故①正確;②因為函數(shù),所以函數(shù)圖象的對稱軸(),即(),當時,,故②正確;③在銳角中,,即,所以,故③正確;④函數(shù)的最小正周期為,故④錯誤;⑤令,解得,所以函數(shù)的對稱中心是,故⑤錯誤.故答案為:①②③【點睛】本題考查三角函數(shù)的圖象與性質(zhì)、誘導(dǎo)公式與三角恒等變換,是中檔題.三、解答題(本大題共6小題.解答應(yīng)寫出文字說明,證明過程或演算步驟.)16、(1),;(2).【解析】(1)由函數(shù)圖象經(jīng)過點且f(x)的圖象有一條對稱軸為直線,可得最大值A(chǔ),且能得周期并求得ω,由五點法作圖求出的值,可得函數(shù)的解析式(2)利用正弦函數(shù)的單調(diào)性求得f(x)的單調(diào)遞增區(qū)間【詳解】(1)函數(shù)f(x)=Asin(ωx+)(A>0,ω>0,)在一個周期內(nèi)的圖象經(jīng)過點,,且f(x)的圖象有一條對稱軸為直線,故最大值A(chǔ)=4,且,∴,∴ω=3所以.因為的圖象經(jīng)過點,所以,所以,.因為,所以,所以.(2)因為,所以,,所以,,即的單調(diào)遞增區(qū)間為.【點睛】本題主要考查由函數(shù)y=Asin(ωx+)的性質(zhì)求解析式,通常由函數(shù)的最大值求出A,由周期求出ω,由五點法作圖求出的值,考查了正弦型函數(shù)的單調(diào)性問題,屬于基礎(chǔ)題17、(1)-12;(2)12.【解析】(1)按照向量的點積公式得到,再由向量運算的分配律得到結(jié)果;(2)根據(jù)向量垂直得到,按照運算公式展開得到結(jié)果即可.【詳解】(1)由題意得,∴(2)∵,∴,∴,∴,∴【點睛】這個題目考查了向量的點積運算,以及向量垂直的轉(zhuǎn)化;向量的兩個作用:①載體作用:關(guān)鍵是利用向量的意義、作用脫去“向量外衣”,轉(zhuǎn)化為我們熟悉的數(shù)學(xué)問題;②工具作用:利用向量可解決一些垂直、平行、夾角與距離問題.18、(1)(2)【解析】(1)由函數(shù)的最大值和最小值求A;由周期解得.由,解得:.即可求得解析式;(2)直接利用復(fù)合函數(shù)單調(diào)性“同增異減”列不等式,即可求得單增區(qū)間.小問1詳解】由函數(shù)的最大值為2.最小值-2.可得A=2;由從到為函數(shù)的一個周期,可得:,解得:.所以由在減區(qū)間上,且,解得:.所以.【小問2詳解】要求函數(shù)的單增區(qū)間,只需,解得:,所以函數(shù)的單調(diào)增區(qū)間為19、(1),;(2)見解析;(3)【解析】(1)由在R上單減,列出方程組,即可求的值;(2)由函數(shù)y=2x+lgx在(0,+∞)單調(diào)遞增可知即,結(jié)合對數(shù)函數(shù)的單調(diào)性可判斷(3)易知在[﹣2,+∞)上單調(diào)遞增.設(shè)滿足條件B的區(qū)間為[a,b],則方程組有解,方程至少有兩個不同的解,即方程x2﹣(2k+1)x+k2﹣2=0有兩個都不小于k的不根.結(jié)合二次方程的實根分布可求k的范圍【詳解】解:(1)∵在R上單減,所以區(qū)間[a,b]滿足,解得a=﹣1,b=1(2)∵函數(shù)y=2x+lgx在(0,+∞)單調(diào)遞增假設(shè)存在滿足條件的區(qū)間[a,b],a<b,則,即∴l(xiāng)gx=﹣x在(0,+∞)有兩個不同的實數(shù)根,但是結(jié)合對數(shù)函數(shù)的單調(diào)性可知,y=lgx與y=﹣x只有一個交點故不存在滿足條件的區(qū)間[a,b],函數(shù)y=2x+lgx是不是閉函數(shù)(3)易知在[﹣2,+∞)上單調(diào)遞增設(shè)滿足條件B的區(qū)間為[a,b],則方程組有解,方程至少有兩個不同的解即方程x2﹣(2k+1)x+k2﹣2=0有兩個都不小于k的不根∴得,即所求【點睛】本題主要考查了函數(shù)的單調(diào)性的綜合應(yīng)用,函數(shù)與方程的綜合應(yīng)用問題,其中解答中根據(jù)函數(shù)與方程的交點相互轉(zhuǎn)化關(guān)系,合理轉(zhuǎn)化為二次函數(shù)的圖象與性質(zhì)的應(yīng)用是解答的關(guān)鍵,著重考查了函數(shù)知識及數(shù)形結(jié)合思想的應(yīng)用,以及轉(zhuǎn)化思想的應(yīng)用,試題有較強的綜合性,屬于難題.20、(1)..(2)見解析(3),【解析】(1)兩條對稱軸之間的距離是半個周期,求,當時,代入求(2)由(1)知,根據(jù)“五點法”畫出函數(shù)的圖象;(3)首先求圖象變換后的解析式,再令,,求函數(shù)的單調(diào)遞減區(qū)間.【詳解】(1)∵相鄰兩條對稱軸之間的距離為,∴的最小正周期,∴.∵直線是函數(shù)的圖象的一條對稱軸,∴.∴,∵,∴(2)由知0-1010故函數(shù)在區(qū)間上的圖象如圖(3)由的圖象上各點的橫坐標縮短為原來的(縱坐標不變),得到,圖象向左平移個單位后得到,,令,,∴函數(shù)的單調(diào)減區(qū)間為,【點睛】本題考查三角函數(shù)性質(zhì)和圖象的綜合問題,意在考查熟練掌握三角函數(shù)性質(zhì),一般“五點法”畫的圖象,若是函數(shù)圖象變換,1.左右平移,需根據(jù)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論