版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2023高考數(shù)學(xué)模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.第24屆冬奧會將于2023年2月4日至2月20日在北京市和張家口市舉行,為了解奧運(yùn)會會旗中五環(huán)所占面積與單獨五個環(huán)面積之和的比值P,某學(xué)生做如圖所示的模擬實驗:通過計算機(jī)模擬在長為10,寬為6的長方形奧運(yùn)會旗內(nèi)隨機(jī)取N個點,經(jīng)統(tǒng)計落入五環(huán)內(nèi)部及其邊界上的點數(shù)為n個,已知圓環(huán)半徑為1,則比值P的近似值為()A. B. C. D.2.已知函數(shù)若恒成立,則實數(shù)的取值范圍是()A. B. C. D.3.關(guān)于函數(shù),有下述三個結(jié)論:①函數(shù)的一個周期為;②函數(shù)在上單調(diào)遞增;③函數(shù)的值域為.其中所有正確結(jié)論的編號是()A.①② B.② C.②③ D.③4.已知實數(shù),則的大小關(guān)系是()A. B. C. D.5.若滿足約束條件則的最大值為()A.10 B.8 C.5 D.36.設(shè),則“”是“”的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件7.已知函數(shù)(),若函數(shù)在上有唯一零點,則的值為()A.1 B.或0 C.1或0 D.2或08.已知函數(shù)是奇函數(shù),且,若對,恒成立,則的取值范圍是()A. B. C. D.9.集合的真子集的個數(shù)為()A.7 B.8 C.31 D.3210.已知等式成立,則()A.0 B.5 C.7 D.1311.設(shè)等比數(shù)列的前項和為,則“”是“”的()A.充分不必要 B.必要不充分C.充要 D.既不充分也不必要12.如圖,圓是邊長為的等邊三角形的內(nèi)切圓,其與邊相切于點,點為圓上任意一點,,則的最大值為()A. B. C.2 D.二、填空題:本題共4小題,每小題5分,共20分。13.“”是“”的__________條件.(填寫“充分必要”、“充分不必要”、“必要不充分”、“既不充分也不必要”之一)14.給出以下式子:①tan25°+tan35°tan25°tan35°;②2(sin35°cos25°+cos35°cos65°);③其中,結(jié)果為的式子的序號是_____.15.如圖,橢圓:的離心率為,F(xiàn)是的右焦點,點P是上第一角限內(nèi)任意一點,,,若,則的取值范圍是_______.16.若函數(shù)()的圖象與直線相切,則______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在直角坐標(biāo)系中,直線的參數(shù)方程是為參數(shù)),曲線的參數(shù)方程是為參數(shù)),以為極點,軸的非負(fù)半軸為極軸建立極坐標(biāo)系.(1)求直線和曲線的極坐標(biāo)方程;(2)已知射線與曲線交于兩點,射線與直線交于點,若的面積為1,求的值和弦長.18.(12分)在直角坐標(biāo)系中,已知曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點為極點,軸的正半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為.(1)求曲線的普通方程和直線的直角坐標(biāo)方程;(2)若射線的極坐標(biāo)方程為().設(shè)與相交于點,與相交于點,求.19.(12分)已知函數(shù).(Ⅰ)若,求曲線在處的切線方程;(Ⅱ)當(dāng)時,要使恒成立,求實數(shù)的取值范圍.20.(12分)在△ABC中,角A,B,C的對邊分別為a,b,c,且b(a2+c2﹣b2)=a2ccosC+ac2cosA.(1)求角B的大小;(2)若△ABC外接圓的半徑為,求△ABC面積的最大值.21.(12分)設(shè)數(shù)列是等比數(shù)列,,已知,(1)求數(shù)列的首項和公比;(2)求數(shù)列的通項公式.22.(10分)已知函數(shù),記不等式的解集為.(1)求;(2)設(shè),證明:.
2023學(xué)年模擬測試卷參考答案(含詳細(xì)解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【答案解析】
根據(jù)比例關(guān)系求得會旗中五環(huán)所占面積,再計算比值.【題目詳解】設(shè)會旗中五環(huán)所占面積為,由于,所以,故可得.故選:B.【答案點睛】本題考查面積型幾何概型的問題求解,屬基礎(chǔ)題.2.D【答案解析】
由恒成立,等價于的圖像在的圖像的上方,然后作出兩個函數(shù)的圖像,利用數(shù)形結(jié)合的方法求解答案.【題目詳解】因為由恒成立,分別作出及的圖象,由圖知,當(dāng)時,不符合題意,只須考慮的情形,當(dāng)與圖象相切于時,由導(dǎo)數(shù)幾何意義,此時,故.故選:D【答案點睛】此題考查的是函數(shù)中恒成立問題,利用了數(shù)形結(jié)合的思想,屬于難題.3.C【答案解析】
①用周期函數(shù)的定義驗證.②當(dāng)時,,,再利用單調(diào)性判斷.③根據(jù)平移變換,函數(shù)的值域等價于函數(shù)的值域,而,當(dāng)時,再求值域.【題目詳解】因為,故①錯誤;當(dāng)時,,所以,所以在上單調(diào)遞增,故②正確;函數(shù)的值域等價于函數(shù)的值域,易知,故當(dāng)時,,故③正確.故選:C.【答案點睛】本題考查三角函數(shù)的性質(zhì),還考查推理論證能力以及分類討論思想,屬于中檔題.4.B【答案解析】
根據(jù),利用指數(shù)函數(shù)對數(shù)函數(shù)的單調(diào)性即可得出.【題目詳解】解:∵,∴,,.∴.故選:B.【答案點睛】本題考查了指數(shù)函數(shù)對數(shù)函數(shù)的單調(diào)性,考查了推理能力與計算能力,屬于基礎(chǔ)題.5.D【答案解析】
畫出可行域,將化為,通過平移即可判斷出最優(yōu)解,代入到目標(biāo)函數(shù),即可求出最值.【題目詳解】解:由約束條件作出可行域如圖,化目標(biāo)函數(shù)為直線方程的斜截式,.由圖可知當(dāng)直線過時,直線在軸上的截距最大,有最大值為3.故選:D.【答案點睛】本題考查了線性規(guī)劃問題.一般第一步畫出可行域,然后將目標(biāo)函數(shù)轉(zhuǎn)化為的形式,在可行域內(nèi)通過平移找到最優(yōu)解,將最優(yōu)解帶回到目標(biāo)函數(shù)即可求出最值.注意畫可行域時,邊界線的虛實問題.6.C【答案解析】
根據(jù)充分條件和必要條件的定義結(jié)合對數(shù)的運(yùn)算進(jìn)行判斷即可.【題目詳解】∵a,b∈(1,+∞),∴a>b?logab<1,logab<1?a>b,∴a>b是logab<1的充分必要條件,故選C.【答案點睛】本題主要考查充分條件和必要條件的判斷,根據(jù)不等式的解法是解決本題的關(guān)鍵.7.C【答案解析】
求出函數(shù)的導(dǎo)函數(shù),當(dāng)時,只需,即,令,利用導(dǎo)數(shù)求其單調(diào)區(qū)間,即可求出參數(shù)的值,當(dāng)時,根據(jù)函數(shù)的單調(diào)性及零點存在性定理可判斷;【題目詳解】解:∵(),∴,∴當(dāng)時,由得,則在上單調(diào)遞減,在上單調(diào)遞增,所以是極小值,∴只需,即.令,則,∴函數(shù)在上單調(diào)遞增.∵,∴;當(dāng)時,,函數(shù)在上單調(diào)遞減,∵,,函數(shù)在上有且只有一個零點,∴的值是1或0.故選:C【答案點睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的零點問題,零點存在性定理的應(yīng)用,屬于中檔題.8.A【答案解析】
先根據(jù)函數(shù)奇偶性求得,利用導(dǎo)數(shù)判斷函數(shù)單調(diào)性,利用函數(shù)單調(diào)性求解不等式即可.【題目詳解】因為函數(shù)是奇函數(shù),所以函數(shù)是偶函數(shù).,即,又,所以,.函數(shù)的定義域為,所以,則函數(shù)在上為單調(diào)遞增函數(shù).又在上,,所以為偶函數(shù),且在上單調(diào)遞增.由,可得,對恒成立,則,對恒成立,,得,所以的取值范圍是.故選:A.【答案點睛】本題考查利用函數(shù)單調(diào)性求解不等式,根據(jù)方程組法求函數(shù)解析式,利用導(dǎo)數(shù)判斷函數(shù)單調(diào)性,屬壓軸題.9.A【答案解析】
計算,再計算真子集個數(shù)得到答案.【題目詳解】,故真子集個數(shù)為:.故選:.【答案點睛】本題考查了集合的真子集個數(shù),意在考查學(xué)生的計算能力.10.D【答案解析】
根據(jù)等式和特征和所求代數(shù)式的值的特征用特殊值法進(jìn)行求解即可.【題目詳解】由可知:令,得;令,得;令,得,得,,而,所以.故選:D【答案點睛】本題考查了二項式定理的應(yīng)用,考查了特殊值代入法,考查了數(shù)學(xué)運(yùn)算能力.11.A【答案解析】
首先根據(jù)等比數(shù)列分別求出滿足,的基本量,根據(jù)基本量的范圍即可確定答案.【題目詳解】為等比數(shù)列,若成立,有,因為恒成立,故可以推出且,若成立,當(dāng)時,有,當(dāng)時,有,因為恒成立,所以有,故可以推出,,所以“”是“”的充分不必要條件.故選:A.【答案點睛】本題主要考查了等比數(shù)列基本量的求解,充分必要條件的集合關(guān)系,屬于基礎(chǔ)題.12.C【答案解析】
建立坐標(biāo)系,寫出相應(yīng)的點坐標(biāo),得到的表達(dá)式,進(jìn)而得到最大值.【題目詳解】以D點為原點,BC所在直線為x軸,AD所在直線為y軸,建立坐標(biāo)系,設(shè)內(nèi)切圓的半徑為1,以(0,1)為圓心,1為半徑的圓;根據(jù)三角形面積公式得到,可得到內(nèi)切圓的半徑為可得到點的坐標(biāo)為:故得到故得到,故最大值為:2.故答案為C.【答案點睛】這個題目考查了向量標(biāo)化的應(yīng)用,以及參數(shù)方程的應(yīng)用,以向量為載體求相關(guān)變量的取值范圍,是向量與函數(shù)、不等式、三角函數(shù)等相結(jié)合的一類綜合問題.通過向量的運(yùn)算,將問題轉(zhuǎn)化為解不等式或求函數(shù)值域,是解決這類問題的一般方法.二、填空題:本題共4小題,每小題5分,共20分。13.充分不必要【答案解析】
由余弦的二倍角公式可得,即或,即可判斷命題的關(guān)系.【題目詳解】由,所以或,所以“”是“”的充分不必要條件.故答案為:充分不必要【答案點睛】本題考查命題的充分條件與必要條件的判斷,考查余弦的二倍角公式的應(yīng)用.14.①②③【答案解析】
由已知分別結(jié)合和差角的正切及正弦余弦公式進(jìn)行化簡即可求解.【題目詳解】①∵tan60°=tan(25°+35°),tan25°+tan35°tan25°tan35°;tan25°tan35°,,②2(sin35°cos25°+cos35°cos65°)=2(sin35°cos25°+cos35°sin25°),=2sin60°;③tan(45°+15°)=tan60°;故答案為:①②③【答案點睛】本題主要考查了兩角和與差的三角公式在三角化簡求值中的應(yīng)用,屬于中檔試題.15.【答案解析】
由于點在橢圓上運(yùn)動時,與軸的正方向的夾角在變,所以先設(shè),又由,可知,從而可得,而點在橢圓上,所以將點的坐標(biāo)代入橢圓方程中化簡可得結(jié)果.【題目詳解】設(shè),,,則,由,得,代入橢圓方程,得,化簡得恒成立,由此得,即,故.故答案為:【答案點睛】此題考查的是利用橢圓中相關(guān)兩個點的關(guān)系求離心率,綜合性強(qiáng),屬于難題.16.2【答案解析】
設(shè)切點由已知可得,即可解得所求.【題目詳解】設(shè),因為,所以,即,又,.所以,即,.故答案為:.【答案點睛】本題考查導(dǎo)數(shù)的幾何意義,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力、運(yùn)算求解能力,難度較易.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1),;(2).【答案解析】
(1)先把直線和曲線的參數(shù)方程化成普通方程,再化成極坐標(biāo)方程;(2)聯(lián)立極坐標(biāo)方程,根據(jù)極徑的幾何意義可得,再由面積可解得極角,從而可得.【題目詳解】(1)直線的參數(shù)方程是為參數(shù)),消去參數(shù)得直角坐標(biāo)方程為:.轉(zhuǎn)換為極坐標(biāo)方程為:,即.曲線的參數(shù)方程是(為參數(shù)),轉(zhuǎn)換為直角坐標(biāo)方程為:,化為一般式得化為極坐標(biāo)方程為:.
(2)由于,得,.所以,所以,由于,所以,所以.【答案點睛】本題主要考查參數(shù)方程與普通方程的互化、直角坐標(biāo)方程與極坐標(biāo)方程的互化,熟記公式即可,屬于常考題型.18.(1)曲線的普通方程為;直線的直角坐標(biāo)方程為(2)【答案解析】
(1)利用消去參數(shù),將曲線的參數(shù)方程化成普通方程,利用互化公式,將直線的極坐標(biāo)方程化為直角坐標(biāo)方程;(2)根據(jù)(1)求出曲線的極坐標(biāo)方程,分別聯(lián)立射線與曲線以及射線與直線的極坐標(biāo)方程,求出和,即可求出.【題目詳解】解:(1)因為(為參數(shù)),所以消去參數(shù),得,所以曲線的普通方程為.因為所以直線的直角坐標(biāo)方程為.(2)曲線的極坐標(biāo)方程為.設(shè)的極徑分別為和,將()代入,解得,將()代入,解得.故.【答案點睛】本題考查利用消參法將參數(shù)方程化成普通方程以及利用互化公式將極坐標(biāo)方程化為直角坐標(biāo)方程,還考查極徑的運(yùn)用和兩點間距離,屬于中檔題.19.(Ⅰ)(Ⅱ)【答案解析】
(Ⅰ)求函數(shù)的導(dǎo)函數(shù),即可求得切線的斜率,則切線方程得解;(Ⅱ)構(gòu)造函數(shù),對參數(shù)分類討論,求得函數(shù)的單調(diào)性,以及最值,即可容易求得參數(shù)范圍.【題目詳解】(Ⅰ)當(dāng)時,,則.所以.又,故所求切線方程為,即.(Ⅱ)依題意,得,即恒成立.令,則.①當(dāng)時,因為,不合題意.②當(dāng)時,令,得,,顯然.令,得或;令,得.所以函數(shù)的單調(diào)遞增區(qū)間是,,單調(diào)遞減區(qū)間是.當(dāng)時,,,所以,只需,所以,所以實數(shù)的取值范圍為.【答案點睛】本題考查利用導(dǎo)數(shù)的幾何意義求切線方程,以及利用導(dǎo)數(shù)研究恒成立問題,屬綜合中檔題.20.(1)B(2)【答案解析】
(1)由已知結(jié)合余弦定理,正弦定理及和兩角和的正弦公式進(jìn)行化簡可求cosB,進(jìn)而可求B;(2)由已知結(jié)合正弦定理,余弦定理及基本不等式即可求解ac的范圍,然后結(jié)合三角形的面積公式即可求解.【題目詳解】(1)因為b(a2+c2﹣b2)=ca2cosC+ac2cosA,∴,即2bcosB=acosC+ccosA由正弦定理可得,2sinBcosB=sinAcosC+sinCcosA=sin(A+C)=sinB,因為,所以,所以B;(2)由正弦定理可得,b=2RsinB2,由余弦定理可得,b2=a2+c2﹣2accosB,即a2+c2﹣ac=4,因為a2+c2≥2ac,所以4=a2+c2﹣ac≥ac,當(dāng)且僅當(dāng)a=c時取等號,即ac的最大值4,所以△ABC面積S即面積的最大值.【答案點睛】本題綜合考查了正弦定理,余弦定理及三角形的面積公式在求解三角形中的應(yīng)用,屬于中檔題.21.(1)(2)【答案解析】
本題主要考查了等比數(shù)列的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 金華國家統(tǒng)計局東陽調(diào)查隊招聘編外工作人員筆試歷年參考題庫附帶答案詳解
- 遼寧2025年遼寧省藥品審評查驗中心招聘12人筆試歷年參考題庫附帶答案詳解
- 蕪湖安徽蕪湖一中教育集團(tuán)蕪湖經(jīng)濟(jì)技術(shù)開發(fā)區(qū)招聘中學(xué)聘用教師43人筆試歷年參考題庫附帶答案詳解
- 百色2025年廣西百色市那坡縣人民醫(yī)院招聘23人筆試歷年參考題庫附帶答案詳解
- 瀘州2025年中共瀘州市委黨校招聘專業(yè)技術(shù)人員筆試歷年參考題庫附帶答案詳解
- 新疆2025年新疆兵團(tuán)第十四師職業(yè)技術(shù)學(xué)校招聘21人筆試歷年參考題庫附帶答案詳解
- 忻州2025年山西忻州市人民醫(yī)院等15個市直事業(yè)單位招聘178人筆試歷年參考題庫附帶答案詳解
- 常州2025年江蘇常州市第一人民醫(yī)院醫(yī)療輔助服務(wù)人員招聘11人(三)筆試歷年參考題庫附帶答案詳解
- 寧波浙江寧波慈溪市中西醫(yī)結(jié)合醫(yī)療健康集團(tuán)(慈溪市紅十字醫(yī)院)招聘筆試歷年參考題庫附帶答案詳解
- 商洛2025年陜西商洛市商南縣縣直機(jī)關(guān)事業(yè)單位選調(diào)13人筆試歷年參考題庫附帶答案詳解
- 研學(xué)旅行課程設(shè)計
- 年度得到 · 沈祖蕓全球教育報告(2024-2025)
- QC080000-2017有害物質(zhì)管理體系程序文件
- 研學(xué)旅行概論課程培訓(xùn)課件
- 專業(yè)律師服務(wù)合同書樣本
- 反詐宣傳講座課件
- GB/T 6003.2-2024試驗篩技術(shù)要求和檢驗第2部分:金屬穿孔板試驗篩
- DB32T 4398-2022《建筑物掏土糾偏技術(shù)標(biāo)準(zhǔn)》
- (精確版)消防工程施工進(jìn)度表
- 保險公司資產(chǎn)負(fù)債表、利潤表、現(xiàn)金流量表和所有者權(quán)益變動表格式
- XX少兒棋院加盟協(xié)議
評論
0/150
提交評論