廣西百色市德??h2022-2023學年九年級數(shù)學第一學期期末檢測試題含解析_第1頁
廣西百色市德??h2022-2023學年九年級數(shù)學第一學期期末檢測試題含解析_第2頁
廣西百色市德保縣2022-2023學年九年級數(shù)學第一學期期末檢測試題含解析_第3頁
廣西百色市德??h2022-2023學年九年級數(shù)學第一學期期末檢測試題含解析_第4頁
廣西百色市德??h2022-2023學年九年級數(shù)學第一學期期末檢測試題含解析_第5頁
免費預覽已結(jié)束,剩余18頁可下載查看

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022-2023學年九上數(shù)學期末模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.下列事件中是必然發(fā)生的事件是()A.拋兩枚均勻的硬幣,硬幣落地后,都是正面朝上B.射擊運動員射擊一次,命中十環(huán)C.在地球上,拋出的籃球會下落D.明天會下雨2.如圖,在中,點分別在邊上,且為邊延長線上一點,連接,則圖中與相似的三角形有()個A. B. C. D.3.下列四組、、的線段中,不能組成直角三角形的是()A.,, B.,,C.,, D.,,4.如圖,正方形的面積為16,是等邊三角形,點在正方形內(nèi),在對角線上有一點,使的和最小,則這個最小值為()A.2 B.4 C.6 D.85.如圖,矩形的對角線交于點O,已知則下列結(jié)論錯誤的是()A. B.C. D.6.在一個不透明的袋子里裝有5個紅球和若干個白球,它們除顏色外其余完全相同,通過多次摸球試驗后發(fā)現(xiàn),摸到紅球的頻率穩(wěn)定在0.2附近,則估計袋中的白球大約有()個A.10 B.15 C.20 D.257.函數(shù)y=ax2﹣1與y=ax(a≠0)在同一直角坐標系中的圖象可能是()A. B. C. D.8.用相同的小立方塊搭成的幾何體的三種視圖都相同(如圖所示),則搭成該幾何體的小立方塊個數(shù)是()A.3個 B.4個 C.5個 D.6個9.關(guān)于二次函數(shù)y=x2+4x﹣5,下列說法正確的是()A.圖象與y軸的交點坐標為(0,5) B.圖象的對稱軸在y軸的右側(cè)C.當x<﹣2時,y的值隨x值的增大而減小 D.圖象與x軸的兩個交點之間的距離為510.拋物線的頂點坐標是()A.(2,9) B.(2,-9)C.(-2,9) D.(-2,-9)二、填空題(每小題3分,共24分)11.已知:如圖,△ABC的面積為16,點D、E分別是邊AB、AC的中點,則△ADE的面積為______.12.如圖,Rt△ABC中,∠A=90°,CD平分∠ACB交AB于點D,O是BC上一點,經(jīng)過C、D兩點的⊙O分別交AC、BC于點E、F,AD=,∠ADC=60°,則劣弧的長為_____.13.如圖,、是⊙上的兩點,若,是⊙上不與點、重合的任一點,則的度數(shù)為__________.14.若,且,則=______.15.如圖,已知AB⊥BD,ED⊥BD,C是線段BD的中點,且AC⊥CE,ED=1,BD=4,那么AB=.16.因式分解:ax3y﹣axy3=_____.17.把方程2x2﹣1=x(x+3)化成一般形式是_________.18.若有一組數(shù)據(jù)為8、4、5、2、1,則這組數(shù)據(jù)的中位數(shù)為__________.三、解答題(共66分)19.(10分)如圖,(1)某學校“智慧方園”數(shù)學社團遇到這樣一個題目:如圖1,在△ABC中,點O在線段BC上,∠BAO=20°,∠OAC=80°,AO=,BO:CO=1:3,求AB的長.經(jīng)過社團成員討論發(fā)現(xiàn),過點B作BD∥AC,交AO的延長線于點D,通過構(gòu)造△ABD就可以解決問題(如圖2),請回答:∠ADB=°,AB=.(2)請參考以上思路解決問題:如圖3,在四邊形ABCD中,對角線AC、BD相交于點O,AC⊥AD,AO=6,∠ABC=∠ACB=75°,BO:OD=1:3,求DC的長.20.(6分)如圖,某市郊外景區(qū)內(nèi)一條筆直的公路經(jīng)過、兩個景點,景區(qū)管委會又開發(fā)了風景優(yōu)美的景點.經(jīng)測量,位于的北偏東的方向上,的北偏東的方向上,且.(1)求景點與的距離.(2)求景點與的距離.(結(jié)果保留根號)21.(6分)用適當方法解下列方程.(1)(2)22.(8分)如圖1,已知平行四邊形,是的角平分線,交于點.(1)求證:.(2)如圖2所示,點是平行四邊形的邊所在直線上一點,若,且,,求的面積.23.(8分)為了“創(chuàng)建文明城市,建設(shè)美麗家園”,我市某社區(qū)將轄區(qū)內(nèi)的一塊面積為的空地進行綠化,一部分種草,剩余部分栽花.設(shè)種草部分的面積為,種草所需費用(元)與的函數(shù)關(guān)系式為,其大致圖象如圖所示.栽花所需費用(元)與的函數(shù)關(guān)系式為.(1)求出,的值;(2)若種花面積不小于時的綠化總費用為(元),寫出與的函數(shù)關(guān)系式,并求出綠化總費用的最大值.24.(8分)如圖已知一次函數(shù)y1=2x+5與反比例函數(shù)y2=(x<0)相交于點A,B.(1)求點A,B的坐標;(2)根據(jù)圖象,直接寫出當y?≤y?時x的取值范圍.25.(10分)如圖,拋物線與直線交于A、B兩點.點A的橫坐標為-3,點B在y軸上,點P是y軸左側(cè)拋物線上的一動點,橫坐標為m,過點P作PC⊥x軸于C,交直線AB于D.(1)求拋物線的解析式;(2)當m為何值時,;(3)是否存在點P,使△PAD是直角三角形,若存在,求出點P的坐標;若不存在,說明理由.26.(10分)如圖,AB為⊙O的直徑,弦CD⊥AB,垂足為點P,直線BF與AD延長線交于點F,且∠AFB=∠ABC.(1)求證:直線BF是⊙O的切線;(2)若CD=2,BP=1,求⊙O的半徑.

參考答案一、選擇題(每小題3分,共30分)1、C【解析】試題分析:A.拋兩枚均勻的硬幣,硬幣落地后,都是正面朝上是隨機事件,故A錯誤;B.射擊運動員射擊一次,命中十環(huán)是隨機事件,故B錯誤;C.在地球上,拋出的籃球會下落是必然事件,故C正確;D.明天會下雨是隨機事件,故D錯誤;故選C.考點:隨機事件.2、D【分析】根據(jù)平行四邊形和平行線的性質(zhì),得出對應的角相等,再結(jié)合相似三角形的性質(zhì)即可得出答案.【詳解】∵EF∥CD,ABCD是平行四邊形∴EF∥CD∥AB∴∠GDP=∠GAB,∠GPD=∠GBA∴△GDP∽△GAB又EF∥AB∴∠GEQ=∠GAB,∠GQE=∠GBA∴△GEQ∽△GAB又∵ABCD為平行四邊形∴AD∥BC∴∠GDP=∠BCP,∠CBP=∠G∴∠BCP=∠GAB又∠GPD=∠BPC∴∠GBA=∠BPC∴△GAB∽△BCP又∠BQF=∠GQE∴∠BQF=∠GBA∴△GAB∽△BFQ綜上共有4個三角形與△GAB相似故答案選擇D.【點睛】本題考查的是相似三角形的判定,需要熟練掌握相似三角形的判定方法,此外,還需要掌握平行四邊形和平行線的相關(guān)知識.3、B【分析】根據(jù)勾股定理的逆定理判斷三角形三邊是否構(gòu)成直角三角形,依次計算判斷得出結(jié)論.【詳解】A.∵,,∴,A選項不符合題意.B.∵,,∴,B選項符合題意.C.∵,,∴,C選項不符合題意.D.∵,∴,D選項不符合題意.故選:B.【點睛】本題考查三角形三邊能否構(gòu)成直角三角形,熟練逆用勾股定理是解題關(guān)鍵.4、B【分析】由于點B與點D關(guān)于AC對稱,所以連接BE,與AC的交點即為F,此時,F(xiàn)D+FE=BE最小,而BE是等邊三角形ABE的邊,BE=AB,由正方形面積可得AB的長,從而得出結(jié)果.【詳解】解:由題意可知當點P位于BE與AC的交點時,有最小值.設(shè)BE與AC的交點為F,連接BD,∵點B與點D關(guān)于AC對稱∴FD=FB∴FD+FE=FB+FE=BE最小又∵正方形ABCD的面積為16∴AB=1∵△ABE是等邊三角形∴BE=AB=1.故選:B.【點睛】本題考查的知識點是軸對稱中的最短路線問題,解題的關(guān)鍵是弄清題意,找出相對應的相等線段.5、C【分析】根據(jù)矩形的性質(zhì)得出∠ABC=∠DCB=90°,AC=BD,AO=CO,BO=DO,AB=DC,再解直角三角形判定各項即可.【詳解】選項A,∵四邊形ABCD是矩形,∴∠ABC=∠DCB=90°,AC=BD,AO=CO,BO=DO,∴AO=OB=CO=DO,∴∠DBC=∠ACB,∴由三角形內(nèi)角和定理得:∠BAC=∠BDC=∠α,選項A正確;選項B,在Rt△ABC中,tanα=,即BC=m?tanα,選項B正確;選項C,在Rt△ABC中,AC=,即AO=,選項C錯誤;選項D,∵四邊形ABCD是矩形,∴DC=AB=m,∵∠BAC=∠BDC=α,∴在Rt△DCB中,BD=,選項D正確.故選C.【點睛】本題考查了矩形的性質(zhì)和解直角三角形,能熟記矩形的性質(zhì)是解此題的關(guān)鍵.6、C【分析】由摸到紅球的頻率穩(wěn)定在0.2附近得出口袋中得到紅色球的概率,進而求出白球個數(shù)即可.【詳解】設(shè)白球個數(shù)為x個,∵摸到紅色球的頻率穩(wěn)定在0.2左右,∴口袋中得到紅色球的概率為0.2,∴,解得:x=20,經(jīng)檢驗x=20是原方程的根,故白球的個數(shù)為20個.故選C.【點睛】此題主要考查了利用頻率估計概率,根據(jù)大量反復試驗下頻率穩(wěn)定值即概率得出是解題關(guān)鍵.7、B【分析】本題可先通過拋物線與y軸的交點排除C、D,然后根據(jù)一次函數(shù)y=ax圖象得到a的正負,再與二次函數(shù)y=ax2的圖象相比較看是否一致.【詳解】解:由函數(shù)y=ax2﹣1可知拋物線與y軸交于點(0,﹣1),故C、D錯誤;A、由拋物線可知,a>0,由直線可知,a<0,故A錯誤;B、由拋物線可知,a>0,由直線可知,a>0,故B正確;故選:B.【點睛】此題考查的是一次函數(shù)的圖象及性質(zhì)和二次函數(shù)的圖象及性質(zhì),掌握一次函數(shù)的圖象及性質(zhì)與系數(shù)關(guān)系和二次函數(shù)的圖象及性質(zhì)與系數(shù)關(guān)系是解決此題的關(guān)鍵.8、B【分析】從俯視圖中可以看出最底層小正方體的個數(shù)及形狀,從主視圖和左視圖可以看出每一層小正方體的層數(shù)和個數(shù),從而算出總的個數(shù).【詳解】依題意可得所以需要4塊;故選:B【點睛】考查學生對三視圖掌握程度和靈活運用能力,同時也體現(xiàn)了對空間想象能力方面的考查.如果掌握口訣“俯視圖打地基,正視圖瘋狂蓋,左視圖拆違章”就更容易得到答案.9、C【分析】通過計算自變量為0的函數(shù)值可對A進行判斷;利用對稱軸方程可對B進行判斷;根據(jù)二次函數(shù)的性質(zhì)對C進行判斷;通過解x2+4x﹣5=0得拋物線與x軸的交點坐標,則可對D進行判斷.【詳解】A、當x=0時,y=x2+4x﹣5=﹣5,所以拋物線與y軸的交點坐標為(0,﹣5),所以A選項錯誤;B、拋物線的對稱軸為直線x=﹣=﹣2,所以拋物線的對稱軸在y軸的左側(cè),所以B選項錯誤;C、拋物線開口向上,當x<﹣2時,y的值隨x值的增大而減小,所以C選項正確;D、當y=0時,x2+4x﹣5=0,解得x1=﹣5,x2=1,拋物線與x軸的交點坐標為(﹣5,0),(1,0),兩交點間的距離為1+5=6,所以D選項錯誤.故選:C.【點睛】本題考查了拋物線與x軸的交點:把求二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)與x軸的交點坐標問題轉(zhuǎn)化為解關(guān)于x的一元二次方程.也考查了二次函數(shù)的性質(zhì).10、A【分析】把拋物線解析式化為頂點式即可求得答案.【詳解】∵,∴頂點坐標為(2,9).故選:A.【點睛】本題主要考查了二次函數(shù)的性質(zhì),掌握二次函數(shù)的頂點式是解答此題的關(guān)鍵,即在中,對稱軸為x=h,頂點坐標為(h,k).二、填空題(每小題3分,共24分)11、4【分析】根據(jù)三角形中位線的性質(zhì)可得DE//BC,,即可證明△ADE∽△ABC,根據(jù)相似三角形的面積比等于相似比的平方即可得答案.【詳解】∵點D、E分別是邊AB、AC的中點,∴DE為△ABC的中位線,∴DE//BC,,∴△ADE∽△ABC,∴=,∵△ABC的面積為16,∴S△ADE=×16=4.故答案為:4【點睛】本題考查三角形中位線的性質(zhì)及相似三角形的判定與性質(zhì),三角形的中位線平行于第三邊,且等于第三邊的一半;熟練掌握相似三角形的面積比等于相似比的平方是解題關(guān)鍵.12、【分析】連接DF,OD,根據(jù)圓周角定理得到∠CDF=90°,根據(jù)三角形的內(nèi)角和得到∠COD=120°,根據(jù)三角函數(shù)的定義得到CF==4,根據(jù)弧長公式即可得到結(jié)論.【詳解】解:如圖,連接DF,OD,∵CF是⊙O的直徑,∴∠CDF=90°,∵∠ADC=60°,∠A=90°,∴∠ACD=30°,∵CD平分∠ACB交AB于點D,∴∠DCF=30°,∵OC=OD,∴∠OCD=∠ODC=30°,∴∠COD=120°,在Rt△CAD中,CD=2AD=2,在Rt△FCD中,CF===4,∴⊙O的半徑=2,∴劣弧的長==π,故答案為π.【點睛】本題考查了圓周角定理,解直角三角形,弧長的計算,作出輔助線構(gòu)建直角三角形是本題的關(guān)鍵.13、或【分析】根據(jù)題意,可分為兩種情況:點C正在優(yōu)弧和點C在劣弧,分別求出答案即可.【詳解】解:當點C在優(yōu)弧上,則∵,∴;當點C在劣弧上時,則∵,∴,∴;∴的度數(shù)為:40°或140°;故答案為:40°或140°.【點睛】本題考查了圓周角定理,解題的關(guān)鍵是掌握同弧所對的圓周角等于圓心角的一半,注意分類討論進行解題.14、12【分析】設(shè),則a=2k,b=3k,c=4k,由求出k值,即可求出c的值.【詳解】解:設(shè),則a=2k,b=3k,c=4k,∵a+b-c=3,∴2k+3k-4k=3,∴k=3,∴c=4k=12.故答案為12.【點睛】此題主要考查了比例的性質(zhì),利用等比性質(zhì)是解題關(guān)鍵.15、4【解析】∵AB⊥BD,ED⊥BD∴∠B=∠D=90°,∠A+∠ACB=90°∵AC⊥CE,即∠ECD+∠ACB=90°∴∠A=∠ECD∴△ABC∽△CDE∴∴AB=416、axy(x+y)(x﹣y)【分析】提取公因式axy后剩余的項滿足平方差公式,再運用平方差公式即可;【詳解】解:ax3y﹣axy3=axy=axy(x+y)(x﹣y);故答案為:axy(x+y)(x﹣y)【點睛】本題主要考查了提公因式法與公式法的運用,掌握提公因式法,平方差公式是解題的關(guān)鍵.17、x2﹣3x﹣1=1【解析】2x2﹣1=x(x+3),2x2﹣1=x2+3x,則2x2﹣x2﹣3x﹣1=1,故x2﹣3x﹣1=1,故答案為x2﹣3x﹣1=1.18、4【分析】根據(jù)中位數(shù)的定義求解即可.【詳解】解:將數(shù)據(jù)8、4、5、2、1按從小到大的順序排列為:1、2、4、5、8,所以這組數(shù)據(jù)的中位數(shù)為4.故答案為:4.【點睛】本題考查了中位數(shù)的定義,屬于基本題型,解題的關(guān)鍵是熟知中位數(shù)的概念.三、解答題(共66分)19、(1)80,8;(2)DC=8【分析】(1)根據(jù)平行線的性質(zhì)可得∠ADB=∠OAC=80°,即可證明△BOD∽△COA,可得,求出AD的長度,再根據(jù)角的和差關(guān)系得∠ABD=180°﹣∠BAD﹣∠ADB=80°=∠ADB,即可得出AB=AD=8.(2)過點B作BE∥AD交AC于點E,通過證明△AOD∽△EOB,可得,根據(jù)線段的比例關(guān)系,可得AB=2BE,根據(jù)勾股定理求出BE的長度,再根據(jù)勾股定理求出DC的長度即可.【詳解】解:(1)∵BD∥AC,∴∠ADB=∠OAC=80°,∵∠BOD=∠COA,∴△BOD∽△COA,∴∵AO=6,∴OD=AO=2,∴AD=AO+OD=6+2=8,∵∠BAD=20°,∠ADB=80°,∴∠ABD=180°﹣∠BAD﹣∠ADB=80°=∠ADB,∴AB=AD=8,故答案為:80,8;(2)過點B作BE∥AD交AC于點E,如圖3所示:∵AC⊥AD,BE∥AD,∴∠DAC=∠BEA=90°,∵∠AOD=∠EOB,∴△AOD∽△EOB,∴∵BO:OD=1:3,∴∵AO=6,∴EO=AO=2,∴AE=AO+EO=6+2=8,∵∠ABC=∠ACB=75°,∴∠BAC=30°,AB=AC,∴AB=2BE,在Rt△AEB中,BE2+AE2=AB2,即(8)2+BE2=(2BE)2,解得:BE=8,∴AB=AC=16,AD=3BE=24,在Rt△CAD中,AC2+AD2=DC2,即162+242=DC2,解得:DC=8.【點睛】本題考查了三角形的綜合問題,掌握平行線的性質(zhì)、相似三角形的性質(zhì)以及判定定理、勾股定理是解題的關(guān)鍵.20、(1)BC=10km;(2)AC=10km.【分析】(1)由題意可求得∠C=30°,進一步根據(jù)等角對等邊即可求得結(jié)果;(2)分別在和中利用銳角三角函數(shù)的知識解直角三角形即可求得結(jié)果.【詳解】解:(1)過點作直線,垂足為,如圖所示.根據(jù)題意,得:,,∴∠C=∠CBD-∠CAD=30°,∴∠CAD=∠C,∴BC=AB=.(2)在中,,∴,在中,,∴.【點睛】本題考查了解直角三角形的應用,屬于基本題型,熟練掌握銳角三角函數(shù)的知識是解題的關(guān)鍵.21、(1),;(2),【解析】(1),,△=16-4×3×(-1)=28,∴,∴,;(2),,,∴或,∴,22、(1)證明見解析;(2)【分析】(1)根據(jù)角平分線的定義結(jié)合兩直線平行,內(nèi)錯角相等可得,然后利用等角對等邊證明即可;(2)先證得為等腰三角形,設(shè),,利用三角形內(nèi)角和定理以及平行線性質(zhì)定理證得,再利用同底等高的兩個三角形面積相等即可求得答案.【詳解】(1)平分,,又四邊形是平行四邊形,,,,;(2),,,為等腰三角形,設(shè),,,,又,,,,即為直角三角形,四邊形是平行四邊形,,∴.【點睛】本題考查了平行四邊形的性質(zhì),角平分線的定義,三角形內(nèi)角和定理,等角對等邊的性質(zhì),同底等高的兩個三角形面積相等,證得為直角三角形是正確解答(2)的關(guān)鍵.23、(1),;(2),綠化總費用的最大值為32500元.【分析】(1)將x=600、y=18000代入y1=k1x可得k1;將x=1000、y=26000代入y1=k2x+6000可得k2;(2)根據(jù)種花面積不小于,則種草面積小于等于,根據(jù)總費用=種草的費用+種花的費用列出二次函數(shù)解析式,然后依據(jù)二次函數(shù)的性質(zhì)可得.【詳解】解:(1)由圖象可知,點在上,代入得:,解得,由圖象可知,點在上,解得;(2)∵種花面積不小于,∴種草面積小于等于,由題意可得:,∴當時,有最大值為32500元.答:綠化總費用的最大值為32500元..【點睛】本題考查了一次函數(shù)的應用,以及二次函數(shù)的應用,掌握待定系數(shù)法求函數(shù)解析式及二次函數(shù)的性質(zhì)是解題的關(guān)鍵.24、(1)A點的坐標為(﹣,2),B點的坐標為(﹣1,3);(2)x≤﹣或﹣1≤x<1.【分析】(1)聯(lián)立兩函數(shù)解析式,解方程組即可得到交點坐標;(2)寫出一次函數(shù)圖象在反比例函數(shù)圖象下方的x的取值范圍即可.【詳解】解:(1)聯(lián)立兩函數(shù)解析式得,,解得或,所以A點的坐標為(﹣,2),B點的坐標為(﹣1,3);(2)根據(jù)圖象可得,當y?≤y?時x的取值范圍是x≤﹣或﹣1≤x<1.【點睛】本題考查了反比例函數(shù)與一次函數(shù)圖象的交點問題,根據(jù)解析式列出方程組求出交點坐標是解題的關(guān)鍵.25、(1)y=x1+4x-1;(1)∴m=,-1,或-3時S四邊形OBDC=1SS△BPD【解析】試題分析:(1)由x=0時帶入y=x-1求出y的值求出B的坐標,當x=-3時,代入y=x-1求出y的值就可以求出A的坐標,由待定系數(shù)法就可以求出拋物線的解析式;(1)連結(jié)OP,由P點的橫坐標為m可以表示出P、D的坐標,可以表示出S四邊形OBDC和1S△BPD建立方程求出其解即可.(3)如圖1,當∠APD=90°時,設(shè)出P點的坐標,就可以表示出D的坐標,由△APD∽△FCD就可與求出結(jié)論,如圖3,當∠PAD=90°時,作AE⊥x軸于E,就有,可以表示出AD,再由△PAD∽△FEA由相似三角形的性質(zhì)就可以求出結(jié)論.試題解析:∵y=x-1,∴x=0時,y=-1,∴B(0,-1).當x=-3時,y=-4,∴A(-3,-4).∵y=x1+bx+c與直線y=x-1交于A、B兩點,∴∴∴拋物線的解析式為:y=x1+4x-1;(1)∵P點橫坐標是m(m<0),∴P(m,m1+4m-1),D(m,m-1)如圖1①,作BE⊥PC于E,∴BE=-m.CD=1-m,OB=1,OC=-m,CP=1-4m-m1,∴PD=1-4m-m1-1+m=-3m-m1,∴解得:m1=0(舍去),m

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論