遼寧省遼陽市2022-2023學(xué)年數(shù)學(xué)九上期末檢測試題含解析_第1頁
遼寧省遼陽市2022-2023學(xué)年數(shù)學(xué)九上期末檢測試題含解析_第2頁
遼寧省遼陽市2022-2023學(xué)年數(shù)學(xué)九上期末檢測試題含解析_第3頁
遼寧省遼陽市2022-2023學(xué)年數(shù)學(xué)九上期末檢測試題含解析_第4頁
遼寧省遼陽市2022-2023學(xué)年數(shù)學(xué)九上期末檢測試題含解析_第5頁
免費預(yù)覽已結(jié)束,剩余19頁可下載查看

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每小題3分,共30分)1.如圖,點A,B在反比例函數(shù)的圖象上,點C,D在反比例函數(shù)的圖象上,AC//BD//y軸,已知點A,B的橫坐標(biāo)分別為1,2,△OAC與△ABD的面積之和為,則k的值為(

)A.4 B.3 C.2 D.2.下列二次根式中,與是同類二次根式的是A. B. C. D.3.某市計劃爭取“全面改薄”專項資金120000000元,用于改造農(nóng)村義務(wù)教育薄弱學(xué)校100所數(shù)據(jù)120000000用科學(xué)記數(shù)法表示為()A.12×108 B.1.2×108 C.1.2×109 D.0.12×1094.在平面直角坐標(biāo)系中,點P(2,-3)關(guān)于原點對稱的點的坐標(biāo)是()A.(2,3)B.(-2,3)C.(-2,-3)D.(-3,2)5.一元二次方程x2-8x-1=0配方后為()A.(x-4)2=17 B.(x+4)2=15C.(x+4)2=17 D.(x-4)2=17或(x+4)2=176.某大學(xué)生創(chuàng)業(yè)團隊有研發(fā)、管理和操作三個小組,各組的日工資和人數(shù)如下表所示.現(xiàn)從管理組分別抽調(diào)1人到研發(fā)組和操作組,調(diào)整后與調(diào)整前相比,下列說法中不正確的是()A.團隊平均日工資不變 B.團隊日工資的方差不變C.團隊日工資的中位數(shù)不變 D.團隊日工資的極差不變7.如圖,在平行四邊形中,點是邊上一點,且,交對角線于點,則等于()A. B. C. D.8.如圖所示幾何體的左視圖正確的是()A. B. C. D.9.若一個正多邊形的邊長與半徑相等,則這個正多邊形的中心角是()A.45° B.60° C.72° D.90°10.下列計算,正確的是()A.a(chǎn)2·a3=a6 B.3a2-a2=2 C.a(chǎn)8÷a2=a4 D.(a2)3=a6二、填空題(每小題3分,共24分)11.如圖,拋物線y=ax2與直線y=bx+c的兩個交點坐標(biāo)分別為A(-2,4),B(1,1),則不等式ax2>bx+c的解集是_________.12.如圖,已知電流在一定時間段內(nèi)正常通過電子元件“”的概率是12,在一定時間段內(nèi),A,B之間電流能夠正常通過的概率為.13.如圖,正方形的邊長為,在邊上分別取點,,在邊上分別取點,使.....依次規(guī)律繼續(xù)下去,則正方形的面積為__________.14.如圖,在Rt△ABC中,∠BAC=90°,且BA=6,AC=8,點D是斜邊BC上的一個動點,過點D分別作DM⊥AB于點M,DN⊥AC于點N,連接MN,則線段MN的最小值為_____.15.已知點與點關(guān)于原點對稱,則__________.16.如圖,△ABC與△DEF均為等邊三角形,O為BC、EF的中點,則AD:BE的值為________.17.已知△ABC的三邊長a=3,b=4,c=5,則它的內(nèi)切圓半徑是________18.在直徑為4cm的⊙O中,長度為的弦BC所對的圓周角的度數(shù)為____________.三、解答題(共66分)19.(10分)交通工程學(xué)理論把在單向道路上行駛的汽車看成連續(xù)的流體,并用流量、速度、密度三個概念描述車流的基本特征,其中流量(輛小時)指單位時間內(nèi)通過道路指定斷面的車輛數(shù);速度(千米小時)指通過道路指定斷面的車輛速度,密度(輛千米)指通過道路指定斷面單位長度內(nèi)的車輛數(shù).為配合大數(shù)據(jù)治堵行動,測得某路段流量與速度之間關(guān)系的部分?jǐn)?shù)據(jù)如下表:速度v(千米/小時)流量q(輛/小時)(1)根據(jù)上表信息,下列三個函數(shù)關(guān)系式中,刻畫,關(guān)系最準(zhǔn)確是_____________________.(只填上正確答案的序號)①;②;③(2)請利用(1)中選取的函數(shù)關(guān)系式分析,當(dāng)該路段的車流速度為多少時,流量達到最大?最大流量是多少?(3)已知,,滿足,請結(jié)合(1)中選取的函數(shù)關(guān)系式繼續(xù)解決下列問題:市交通運行監(jiān)控平臺顯示,當(dāng)時道路出現(xiàn)輕度擁堵.試分析當(dāng)車流密度在什么范圍時,該路段將出現(xiàn)輕度擁堵?20.(6分)已知:如圖,在△ABC中,AB=AC,以AB為直徑的⊙O交BC于點D,過點D作DE⊥AC于點E.(1)求證:DE是⊙O的切線.(2)若⊙O的半徑為3cm,∠C=30°,求圖中陰影部分的面積.21.(6分)某公司銷售某一種新型通訊產(chǎn)品,已知每件產(chǎn)品的進價為4萬元,每月銷售該種產(chǎn)品的總開支(不含進價)總計11萬元,在銷售過程中發(fā)現(xiàn),月銷售量(件)與銷售單價(萬元)之間存在著如圖所示的一次函數(shù)關(guān)系(1)求關(guān)于的函數(shù)關(guān)系式.(2)試寫出該公司銷售該種產(chǎn)品的月獲利(萬元)關(guān)于銷售單價(萬元)的函數(shù)關(guān)系式,當(dāng)銷售單價為何值時,月獲利最大?并求這個最大值.(月獲利=月銷售額一月銷售產(chǎn)品總進價一月總開支)22.(8分)天水某公交公司將淘汰某一條線路上“冒黑煙”較嚴(yán)重的公交車,計劃購買A型和B型兩行環(huán)保節(jié)能公交車共10輛,若購買A型公交車1輛,B型公交車2輛,共需400萬元;若購買A型公交車2輛,B型公交車1輛,共需350萬元,(1)求購買A型和B型公交車每輛各需多少萬元?(2)預(yù)計在該條線路上A型和B型公交車每輛年均載客量分別為60萬人次和100萬人次.若該公司購買A型和B型公交車的總費用不超過1220萬元,且確保這10輛公交車在該線路的年均載客量總和不少于650萬人次,則該公司有哪幾種購車方案?哪種購車方案總費用最少?最少總費用是多少?23.(8分)如圖,拋物線y=ax2+2x+c(a<0)與x軸交于點A和點B(點A在原點的左側(cè),點B在原點的右側(cè)),與y軸交于點C,OB=OC=1.(1)求該拋物線的函數(shù)解析式;(2)如圖1,連接BC,點D是直線BC上方拋物線上的點,連接OD,CD,OD交BC于點F,當(dāng)S△COF:S△CDF=1:2時,求點D的坐標(biāo).(1)如圖2,點E的坐標(biāo)為(0,),在拋物線上是否存在點P,使∠OBP=2∠OBE?若存在,請直接寫出符合條件的點P的坐標(biāo);若不存在,請說明理由.24.(8分)如圖1,為等腰三角形,是底邊的中點,腰與相切于點,底交于點,.(1)求證:是的切線;(2)如圖2,連接,交于點,點是弧的中點,若,,求的半徑.25.(10分)如圖,中,,,面積為1.(1)尺規(guī)作圖:作的平分線交于點;(不要求寫作法,保留作圖痕跡)(2)在(1)的條件下,求出點到兩條直角邊的距離.26.(10分)用適當(dāng)?shù)姆椒ń庀路匠蹋?/p>

參考答案一、選擇題(每小題3分,共30分)1、B【分析】首先根據(jù)A,B兩點的橫坐標(biāo),求出A,B兩點的坐標(biāo),進而根據(jù)AC//BD//y軸,及反比例函數(shù)圖像上的點的坐標(biāo)特點得出C,D兩點的坐標(biāo),從而得出AC,BD的長,根據(jù)三角形的面積公式表示出S△OAC,S△ABD的面積,再根據(jù)△OAC與△ABD的面積之和為,列出方程,求解得出答案.【詳解】把x=1代入得:y=1,∴A(1,1),把x=2代入得:y=,∴B(2,),∵AC//BD//y軸,∴C(1,k),D(2,)∴AC=k-1,BD=-,∴S△OAC=(k-1)×1,S△ABD=(-)×1,又∵△OAC與△ABD的面積之和為,∴(k-1)×1+(-)×1=,解得:k=3;故答案為B.【點睛】:此題考查了反比例函數(shù)系數(shù)k的幾何意義,以及反比例函數(shù)圖象上點的坐標(biāo)特征,熟練掌握反比例函數(shù)k的幾何意義是解本題的關(guān)鍵.2、C【分析】根據(jù)同類二次根式的定義即可判斷.【詳解】A.=,不符合題意;B.,不符合題意;C.=,符合題意;D.=,不符合題意;故選C.【點睛】此題主要考查同類二次根式的識別,解題的關(guān)鍵是熟知二次根式的性質(zhì)進行化簡.3、B【解析】科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當(dāng)原數(shù)絕對值>10時,n是正數(shù);當(dāng)原數(shù)的絕對值<1時,n是負(fù)數(shù).【詳解】120000000=1.2×108,故選:B.【點睛】此題考查了科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.4、B【解析】根據(jù)“平面直角坐標(biāo)系中任意一點P(x,y),關(guān)于原點的對稱點是(-x,-y)”解答.【詳解】根據(jù)中心對稱的性質(zhì),得點P(2,-3)關(guān)于原點對稱的點的坐標(biāo)是(-2,3).故選B.【點睛】關(guān)于原點對稱的點坐標(biāo)的關(guān)系,是需要識記的基本問題.記憶方法是結(jié)合平面直角坐標(biāo)系的圖形記憶.5、A【解析】x2-8x-1=0,移項,得x2-8x=1,配方,得x2-8x+42=1+42,即(x-4)2=17.故選A.點睛:配方法的一般步驟:(1)把常數(shù)項移到等號的右邊;(2)把二次項的系數(shù)化為1;(3)等式兩邊同時加上一次項系數(shù)一半的平方.6、B【解析】根據(jù)平均數(shù)、方差、中位數(shù)和眾數(shù)的定義分別對每一項進行分析,即可得出答案.【詳解】解:調(diào)整前的平均數(shù)是:=280;調(diào)整后的平均數(shù)是:=280;故A正確;調(diào)整前的方差是:=;調(diào)整后的方差是:=;故B錯誤;調(diào)整前:把這些數(shù)從小到大排列為:260,260,260,260,280,280,280,280,300,300,300,300;最中間兩個數(shù)的平均數(shù)是:280,則中位數(shù)是280,調(diào)整后:把這些數(shù)從小到大排列為:260,260,260,260,260,280,280,300,300,300,300,300;最中間兩個數(shù)的平均數(shù)是:280,則中位數(shù)是280,故C正確;調(diào)整前的極差是40,調(diào)整后的極差也是40,則極差不變,故D正確.故選B.【點睛】此題考查了平均數(shù)、方差、中位數(shù)和極差的概念,掌握各個數(shù)據(jù)的計算方法是關(guān)鍵.7、A【分析】根據(jù)平行四邊形的性質(zhì)和相似三角形的性質(zhì)解答即可.【詳解】解:∵四邊形是平行四邊形,,∴AD∥BC,AD=BC=3ED,∴∠EDB=∠CBD,∠DEF=∠BCF,∴△DFE∽△BFC,∴.故選:A.【點睛】本題考查了平行四邊形的性質(zhì)和相似三角形的判定和性質(zhì),屬于??碱}型,熟練掌握相似三角形的判定和性質(zhì)是解題的關(guān)鍵.8、A【分析】左視圖是從物體的左面看得到的視圖,找到從左面看所得到的圖形即可.【詳解】該幾何體的左視圖為:是一個矩形,且矩形中有兩條橫向的虛線.故選A.【點睛】本題考查了三視圖的知識,左視圖是從物體的左面看得到的視圖9、B【分析】利用正多邊形的邊長與半徑相等得到正多邊形為正六邊形,然后根據(jù)正多邊形的中心角定義求解.【詳解】解:因為正多邊形的邊長與半徑相等,所以正多邊形為正六邊形,因此這個正多邊形的中心角為60°.

故選B.【點睛】本題主要考查的是正多邊形的中心角的概念,正確的理解正多邊形的邊長與半徑相等得到正多邊形為正六邊形是解決問題的關(guān)鍵.10、D【分析】按照整式乘法、合并同類項、整式除法、冪的乘方依次化簡即可得到答案.【詳解】A.a2·a3=a5,故該項錯誤;B.3a2-a2=2a2,故該項錯誤;C.a8÷a2=a6,故該項錯誤;D.(a2)3=a6正確,故選:D.【點睛】此題考查整式的化簡計算,熟記整式乘法、合并同類項、整式除法、冪的乘方的計算方法即可正確解答.二、填空題(每小題3分,共24分)11、x<-2或x>1【分析】根據(jù)圖形拋物線與直線的兩個交點情況可知,不等式的解集為拋物線的圖象在直線圖象的上方對應(yīng)的自變量的取值范圍.【詳解】如圖所示:

∵拋物線與直線的兩個交點坐標(biāo)分別為,

∴二次函數(shù)圖象在一次函數(shù)圖象上方時,即不等式的解集為:或.

故答案為:或.【點睛】本題主要考查了二次函數(shù)與不等式組.解答此題時,利用了圖象上的點的坐標(biāo)特征來解不等式.12、34【解析】根據(jù)題意,電流在一定時間段內(nèi)正常通過電子元件的概率是12即某一個電子元件不正常工作的概率為12則兩個元件同時不正常工作的概率為14故在一定時間段內(nèi)AB之間電流能夠正常通過的概率為1-14=3故答案為:3413、【分析】利用勾股定理可得A1B12=a2,即正方形A1B1C1D1的面積,同理可求出正方形A2B2C2D2的面積,得出規(guī)律即可得答案.【詳解】∵正方形ABCD的邊長為a,,∴A1B12=A1B2+BB12==a2,A1B1=a,∴正方形A1B1C1D1的面積為a2,∵,∴A2B22==()2a2,∴正方形A2B2C2D2的面積為()2a2,……∴正方形的面積為()na2,故答案為:()na2【點睛】本題考查正方形的性質(zhì)及勾股定理,正確計算各正方形的面積并得出規(guī)律是解題關(guān)鍵.14、【分析】由勾股定理求出BC的長,再證明四邊形DMAN是矩形,可得MN=AD,根據(jù)垂線段最短和三角形面積即可解決問題.【詳解】解:∵∠BAC=90°,且BA=6,AC=8,∴BC==10,∵DM⊥AB,DN⊥AC,∴∠DMA=∠DNA=∠BAC=90°,∴四邊形DMAN是矩形,∴MN=AD,∴當(dāng)AD⊥BC時,AD的值最小,此時,△ABC的面積=AB×AC=BC×AD,∴AD==,∴MN的最小值為;故答案為:.【點睛】本題考查了矩形的判定和性質(zhì)、勾股定理、三角形面積、垂線段最短等知識,解題的關(guān)鍵是熟練掌握基本知識,屬于中考??碱}型.15、1【分析】直接利用關(guān)于原點對稱點的性質(zhì)得出a,b的值,即可得出答案.【詳解】解:∵點P(a,-6)與點Q(-5,3b)關(guān)于原點對稱,

∴a=5,3b=6,

解得:b=2,

故a+b=1.

故答案為:1.【點睛】此題考查關(guān)于原點對稱點的性質(zhì),正確記憶橫縱坐標(biāo)的關(guān)系是解題關(guān)鍵.16、【詳解】連接OA、OD,∵△ABC與△DEF均為等邊三角形,O為BC、EF的中點,∴AO⊥BC,DO⊥EF,∠EDO=30°,∠BAO=30°,∴OD:OE=OA:OB=:1,∵∠DOE+∠EOA=∠BOA+∠EOA,即∠DOA=∠EOB,∴△DOA∽△EOB,∴OD:OE=OA:OB=AD:BE=:1=,故答案為考點:1.相似三角形的判定與性質(zhì);2.等邊三角形的性質(zhì)17、1【解析】∵a=3,b=4,c=5,∴a2+b2=c2,∴∠ACB=90°,設(shè)△ABC的內(nèi)切圓切AC于E,切AB于F,切BC于D,連接OE、OF、OD、OA、OC、OB,內(nèi)切圓的半徑為R,則OE=OF=OD=R,∵S△ACB=S△AOC+S△AOB+S△BOC,∴×AC×BC=×AC×OE+×AB×OF+×BC×OD,∴3×4=4R+5R+3R,解得:R=1.故答案為1.18、60°或120°【分析】如下圖所示,分兩種情況考慮:D點在優(yōu)弧CDB上或E點在劣弧BC上時,根據(jù)三角函數(shù)可求出∠OCF的大小,進而求出∠BOC的大小,再由圓周角定理可求出∠D、∠E大小,進而得到弦BC所對的圓周角.【詳解】解:分兩種情況考慮:D在優(yōu)弧CDB上或E在劣弧BC上時,可得弦BC所對的圓周角為∠D或∠E,如下圖所示,作OF⊥BC,由垂徑定理可知,F(xiàn)為BC的中點,∴CF=BF=BC=,又直徑為4cm,∴OC=2cm,在Rt△AOC中,cos∠OCF=,∴∠OCF=30°,∵OC=OB,∴∠OCF=∠OBF=30°,∴∠COB=120°,∴∠D=∠COB=60°,又圓內(nèi)接四邊形的對角互補,∴∠E=120°,則弦BC所對的圓周角為60°或120°.故答案為:60°或120°.【點睛】此題考查了圓周角定理,圓內(nèi)接四邊形的性質(zhì),銳角三角函數(shù)定義,以及特殊角的三角函數(shù)值,熟練掌握圓周角定理是解本題的關(guān)鍵.三、解答題(共66分)19、(1)答案為③;(2)v=30時,q達到最大值,q的最大值為1;(3)84<k≤2【分析】(1)根據(jù)一次函數(shù),反比例函數(shù)和二次函數(shù)的性質(zhì),結(jié)合表格數(shù)據(jù),即可得到答案;(2)把二次函數(shù)進行配方,即可得到答案;(3)把v=12,v=18,分別代入二次函數(shù)解析式,求出q的值,進而求出對應(yīng)的k值,即可得到答案.【詳解】(1)∵,q隨v的增大而增大,∴①不符合表格數(shù)據(jù),∵,q隨v的增大而減小,∴②不符合表格數(shù)據(jù),∵,當(dāng)q≤30時,q隨v的增大而增大,q≥30時,q隨v的增大而減小,∴③基本符合表格數(shù)據(jù),故答案為:③;(2)∵q=﹣2v2+120v=﹣2(v﹣30)2+1,且﹣2<0,∴當(dāng)v=30時,q達到最大值,q的最大值為1.答:當(dāng)該路段的車流速度為30千米/小時,流量達到最大,最大流量是1輛/小時.(3)當(dāng)v=12時,q=﹣2×122+120×12=1152,此時k=1152÷12=2,當(dāng)v=18時,q=﹣2×182+120×18=1512,此時k=1512÷18=84,∴84<k≤2.答:當(dāng)84<k≤2時,該路段將出現(xiàn)輕度擁堵.【點睛】本題主要考查二次函數(shù)的實際應(yīng)用,理解二次函數(shù)的性質(zhì),是解題的關(guān)鍵.20、(1)見解析;(1)(3π﹣)cm1【分析】(1)由等腰三角形的性質(zhì)證出∠ODB=∠C.得出OD∥AC.由已知條件證出DE⊥OD,即可得出結(jié)論;(1)由垂徑定理求出OF,由勾股定理得出DF,求出BD,得出△BOD的面積,再求出扇形BOD的面積,即可得出結(jié)果.【詳解】(1)連接OD,如圖1所示:∵OD=OB,∴∠B=∠ODB.∵AB=AC,∴∠B=∠C.∴∠ODB=∠C.∴OD∥AC.∵DE⊥AC,∴DE⊥OD,∴DE是⊙O的切線.(1)過O作OF⊥BD于F,如圖1所示:∵∠C=30°,AB=AC,OB=OD,∴∠OBD=∠ODB=∠C=30°,∴∠BOD=110°,在Rt△DFO中,∠FDO=30°,∴OF=OD=cm,∴DF==cm,∴BD=1DF=3cm,∴S△BOD=×BD×OF=×3×=cm1,S扇形BOD==3πcm1,∴S陰=S扇形BOD﹣S△BOD==(3π﹣)cm1.【點睛】本題考查了切線的判定、等腰三角形的性質(zhì)、平行線的判定與性質(zhì)、勾股定理、三角形和扇形面積的計算等知識;熟練掌握切線的判定,由垂徑定理和勾股定理求出OF和DF是解決問題(1)的關(guān)鍵.21、(1);(2)當(dāng)x=10萬元時,最大月獲利為7萬元【分析】(1)根據(jù)函數(shù)圖象,利用待定系數(shù)法求解可得;(2)根據(jù)“總利潤=單價利潤×銷售量-總開支”列出函數(shù)解析式,由二次函數(shù)的性質(zhì)可得最值.【詳解】(1)設(shè)y=kx+b,將點(6,5)、(8,4)代入,得:,解得:,∴;(2)根據(jù)題意得:z=(x-4)y-11=(x-4)(-x+8)-11=-x2+10x-43=-(x-10)2+7,∴當(dāng)x=10萬元時,最大月獲利為7萬元.【點睛】本題主要考查二次函數(shù)的應(yīng)用,熟練掌握待定系數(shù)法求函數(shù)解析式及二次函數(shù)的圖象和性質(zhì)是解題的關(guān)鍵.22、(1)購買A型公交車每輛需100萬元,購買B型公交車每輛需150萬元.(2)購買A型公交車8輛,則B型公交車2輛費用最少,最少總費用為1100萬元.【解析】(1)設(shè)購買A型公交車每輛需x萬元,購買B型公交車每輛需y萬元,根據(jù)“A型公交車1輛,B型公交車2輛,共需400萬元;A型公交車2輛,B型公交車1輛,共需350萬元”列出方程組解決問題;(2)設(shè)購買A型公交車a輛,則B型公交車(10-a)輛,由“購買A型和B型公交車的總費用不超過1220萬元”和“10輛公交車在該線路的年均載客總和不少于650萬人次”列出不等式組探討得出答案即可.【詳解】(1)設(shè)購買A型公交車每輛需x萬元,購買B型公交車每輛需y萬元,由題意得,解得,答:購買A型公交車每輛需100萬元,購買B型公交車每輛需150萬元.(2)設(shè)購買A型公交車a輛,則B型公交車(10﹣a)輛,由題意得,解得:,因為a是整數(shù),所以a=6,7,8;則(10﹣a)=4,3,2;三種方案:①購買A型公交車6輛,則B型公交車4輛:100×6+150×4=1200萬元;②購買A型公交車7輛,則B型公交車3輛:100×7+150×3=1150萬元;③購買A型公交車8輛,則B型公交車2輛:100×8+150×2=1100萬元;購買A型公交車8輛,則B型公交車2輛費用最少,最少總費用為1100萬元.【點睛】此題考查二元一次方程組和一元一次不等式組的應(yīng)用,注意理解題意,找出題目蘊含的數(shù)量關(guān)系,列出方程組或不等式組解決問題.23、(1)y=﹣x2+2x+1;(2)點D(1,4)或(2,1);(1)當(dāng)點P在x軸上方時,點P(,);當(dāng)點P在x軸下方時,點(﹣,﹣)【分析】(1)c=1,點B(1,0),將點B的坐標(biāo)代入拋物線表達式:y=ax2+2x+1,解得a=﹣1即可得出答案;(2)由S△COF:S△CDF=1:2得OF:FD=1:2,由DH∥CO得CO:DM=1:2,求得DM=2,而DM==2,即可求解;(1)分點P在x軸上方、點P在x軸下方兩種情況,分別求解即可.【詳解】(1)∵OB=OC=1,∴點C的坐標(biāo)為C(0,1),c=1,點B的坐標(biāo)為B(1,0),將點B的坐標(biāo)代入拋物線表達式:y=ax2+2x+1,解得:a=﹣1,故拋物線的表達式為:y=﹣x2+2x+1;(2)如圖,過點D作DH⊥x軸于點H,交BC于點M,∵S△COF:S△CDF=1:2,∴OF:FD=1:2,∵DH∥CO,∴CO:DM=OF:FD=1:2,∴DM=CO=2,設(shè)直線BC的表達式為:,將C(0,1),B(1,0)代入得,解得:,∴直線BC的表達式為:y=﹣x+1,設(shè)點D的坐標(biāo)為(x,﹣x2+2x+1),則點M(x,﹣x+1),∴DM==2,解得:x=1或2,故點D的坐標(biāo)為:(1,4)或(2,1);(1)①當(dāng)點P在x軸上方時,取OG=OE,連接BG,過點B作直線PB交拋物線于點P,交y軸于點M,使∠GBM=∠GBO,則∠OBP=2∠OBE,過點G作GH⊥BM,如圖,∵點E的坐標(biāo)為(0,),∴OE=,∵∠GBM=∠GBO,GH⊥BM,GO⊥OB,∴GH=GO=OE=,BH=BO=1,設(shè)MH=x,則MG=,在△OBM中,OB2+OM2=MB2,即,解得:x=2,故MG==,則OM=MG+GO=+,點M的坐標(biāo)為(0,4),設(shè)直線BM的表達式為:,將點B(1,0)、M(0,4)代入得:,解得:,∴直線BM的表達式為:y=x+4,解方程組解得:x=1(舍去)或,將x=代入y=x+4得y=,故點P的坐標(biāo)為(,);②當(dāng)點P在x軸下方時,如圖,過點E作EN⊥BP,直線PB交y軸于點M,∵∠OBP=2∠OBE,∴BE是∠OBP的平分線,∴EN=OE=,BN=OB=1,設(shè)MN=x,則ME=,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論