2022年安徽省合肥市第一六八中學(xué)數(shù)學(xué)九年級第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第1頁
2022年安徽省合肥市第一六八中學(xué)數(shù)學(xué)九年級第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第2頁
2022年安徽省合肥市第一六八中學(xué)數(shù)學(xué)九年級第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第3頁
2022年安徽省合肥市第一六八中學(xué)數(shù)學(xué)九年級第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第4頁
2022年安徽省合肥市第一六八中學(xué)數(shù)學(xué)九年級第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第5頁
免費預(yù)覽已結(jié)束,剩余21頁可下載查看

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(每小題3分,共30分)1.如圖,拋物線與軸交于點,頂點坐標(biāo)為,與軸的交點在、之間(包含端點).有下列結(jié)論:①當(dāng)時,;②;③;④.其中正確的有()A.1個 B.2個 C.3個 D.4個2.已知地球上海洋面積約為361000000km2,361000000這個數(shù)用科學(xué)記數(shù)法可表示為()A.3.61×106 B.3.61×107 C.3.61×108 D.3.61×1093.下列物體的光線所形成的投影是平行投影的是()A.臺燈 B.手電筒 C.太陽 D.路燈4.某市為了改善城市容貌,綠化環(huán)境,計劃過兩年時間,綠地面積增加44%,這兩年平均每年綠地面積的增長率是()A.19% B.20% C.21% D.22%5.如圖,四邊形ABCD是正方形,以BC為底邊向正方形外部作等腰直角三角形BCE,連接AE,分別交BD,BC于點F,G,則下列結(jié)論:①△AFB∽△ABE;②△ADF∽△GCE;③CG=3BG;④AF=EF,其中正確的有().A.①③ B.②④ C.①② D.③④6.如圖,將一個大平行四邊形在一角剪去一個小平行四邊形,如果用直尺畫一條直線將其剩余部分分割成面積相等的兩部分,這樣的不同的直線一共可以畫出()A.1條 B.2條 C.3條 D.4條7.m是方程的一個根,且,則的值為()A. B.1 C. D.8.拋物線與坐標(biāo)軸的交點個數(shù)是()A.3 B.2 C.1 D.09.如圖是一個可以自由轉(zhuǎn)動的轉(zhuǎn)盤,轉(zhuǎn)盤分成黑、白兩種顏色指針的位置固定,轉(zhuǎn)動的轉(zhuǎn)盤停止后,指針恰好指向白色扇形的穊率為(指針指向OA時,當(dāng)作指向黑色扇形;指針指OB時,當(dāng)作指向白色扇形),則黑色扇形的圓心角∠AOB=()A.40° B.45° C.50° D.60°10.已知一元二次方程x2+kx-3=0有一個根為1,則k的值為()A.?2 B.2 C.?4 D.4二、填空題(每小題3分,共24分)11.若一組數(shù)據(jù)1,2,x,4的平均數(shù)是2,則這組數(shù)據(jù)的方差為_____.12.小明向如圖所示的區(qū)域內(nèi)投擲飛鏢,陰影部分時的內(nèi)切圓,已知,,,如果小明投擲飛鏢一次,則飛鏢落在陰影部分的概率為____________.13.一個圓錐的母線長為5cm,底面圓半徑為3cm,則這個圓錐的側(cè)面積是____cm2.(結(jié)果保留π).14.如圖,點A、B分別在反比例函數(shù)y=(k1>0)和y=(k2<0)的圖象上,連接AB交y軸于點P,且點A與點B關(guān)于P成中心對稱.若△AOB的面積為4,則k1-k2=______.15.如圖,點P是∠AOB平分線OC上一點,PD⊥OB,垂足為D,若PD=2,則點P到邊OA的距離是_____.16.圓錐的底面半徑是1,側(cè)面積是3π,則這個圓錐的側(cè)面展開圖的圓心角為________.17.如圖,在平面直角坐標(biāo)系中,為坐標(biāo)原點,點在第一象限,與軸所夾的銳角為,且,則的值是______.18.如圖,已知點A,C在反比例函數(shù)的圖象上,點B,D在反比例函的圖象上,AB∥CD∥x軸,AB,CD在x軸的兩側(cè),AB=5,CD=4,AB與CD的距離為6,則a?b的值是_______.三、解答題(共66分)19.(10分)(1)如圖1,已知∠ACB=∠DCE=90°,AC=BC=6,CD=CE,AE=3,∠CAE=45°,求AD的長.(2)如圖2,已知∠ACB=∠DCE=90°,∠ABC=∠CED=∠CAE=30°,AC=3,AE=8,求AD的長.20.(6分)已知一次函數(shù)的圖象與軸和軸分別交于、兩點,與反比例函數(shù)的圖象分別交于、兩點.(1)如圖,當(dāng),點在線段上(不與點、重合)時,過點作軸和軸的垂線,垂足為、.當(dāng)矩形的面積為2時,求出點的位置;(2)如圖,當(dāng)時,在軸上是否存在點,使得以、、為頂點的三角形與相似?若存在,求出點的坐標(biāo);若不存在,說明理由;(3)若某個等腰三角形的一條邊長為5,另兩條邊長恰好是兩個函數(shù)圖象的交點橫坐標(biāo),求的值.21.(6分)如圖,已知是的直徑,點在上,過點的直線與的延長線交于點,.求證:是的切線;求證:;點是弧的中點,交于點,若,求的值.22.(8分)已知關(guān)于的一元二次方程的一個根是1,求它的另一個根及m的值.23.(8分)如圖,中,,以為直徑作半圓交與點,點為的中點,連結(jié).(1)求證:是半圓的切線;(2)若,,求的長.24.(8分)如圖,已知∠BAC=30°,把△ABC繞著點A順時針旋轉(zhuǎn)到△ADE的位置,使得點D,A,C在同一直線上.(1)△ABC旋轉(zhuǎn)了多少度?(2)連接CE,試判斷△AEC的形狀;(3)求∠AEC的度數(shù).25.(10分)如圖,點P在直線y=x-1上,設(shè)過點P的直線交拋物線y=x2于A(a,a2),B(b,b2)兩點,當(dāng)滿足PA=PB時,稱點P為“優(yōu)點”.(1)當(dāng)a+b=0時,求“優(yōu)點”P的橫坐標(biāo);(2)若“優(yōu)點”P的橫坐標(biāo)為3,求式子18a-9b的值;(3)小安演算發(fā)現(xiàn):直線y=x-1上的所有點都是“優(yōu)點”,請判斷小安發(fā)現(xiàn)是否正確?如果正確,說明理由;如果不正確,舉出反例.26.(10分)(1)問題發(fā)現(xiàn):如圖1,在Rt△ABC中,AB=AC,D為BC邊上一點(不與點B、C重合)將線段AD繞點A逆時針旋轉(zhuǎn)90°得到AE,連接EC,則線段BD與CE的數(shù)量關(guān)系是,位置關(guān)系是;(2)探究證明:如圖2,在Rt△ABC與Rt△ADE中,AB=AC,AD=AE,將△ADE繞點A旋轉(zhuǎn),使點D落在BC的延長線上時,連接EC,寫出此時線段AD,BD,CD之間的等量關(guān)系,并證明;(3)拓展延仲:如圖3,在四邊形ABCF中,∠ABC=∠ACB=∠AFC=45°.若BF=13,CF=5,請直接寫出AF的長.

參考答案一、選擇題(每小題3分,共30分)1、C【分析】①由拋物線的頂點坐標(biāo)的橫坐標(biāo)可得出拋物線的對稱軸為x=1,結(jié)合拋物線的對稱性及點A的坐標(biāo),可得出點B的坐標(biāo),由點B的坐標(biāo)即可斷定①正確;②由拋物線的開口向下可得出a<1,結(jié)合拋物線對稱軸為x=-=1,可得出b=-2a,將b=-2a代入2a+b中,結(jié)合a<1即可得出②不正確;③由拋物線與y軸的交點的范圍可得出c的取值范圍,將(-1,1)代入拋物線解析式中,再結(jié)合b=-2a即可得出a的取值范圍,從而斷定③正確;④結(jié)合拋物線的頂點坐標(biāo)的縱坐標(biāo)為,結(jié)合a的取值范圍以及c的取值范圍即可得出n的范圍,從而斷定④正確.綜上所述,即可得出結(jié)論.【詳解】解:①由拋物線的對稱性可知:

拋物線與x軸的另一交點橫坐標(biāo)為1×2-(-1)=2,

即點B的坐標(biāo)為(2,1),

∴當(dāng)x=2時,y=1,①正確;

②∵拋物線開口向下,

∴a<1.

∵拋物線的頂點坐標(biāo)為(1,n),

∴拋物線的對稱軸為x=-=1,

∴b=-2a,

2a+b=a<1,②不正確;

③∵拋物線與y軸的交點在(1,2)、(1,2)之間(包含端點),

∴2≤c≤2.

令x=-1,則有a-b+c=1,

又∵b=-2a,

∴2a=-c,即-2≤2a≤-2,

解得:-1≤a≤-,③正確;

④∵拋物線的頂點坐標(biāo)為,∴n==c-,又∵b=-2a,2≤c≤2,-1≤a≤-,

∴n=c-a,≤n≤4,④正確.

綜上可知:正確的結(jié)論為①③④.

故選C.【點睛】本題考查了二次函數(shù)圖象與系數(shù)的關(guān)系,解決該題型題目時,利用二次函數(shù)的系數(shù)表示出來拋物線的頂點坐標(biāo)是關(guān)鍵.2、C【解析】分析:科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當(dāng)原數(shù)絕對值大于1時,n是正數(shù);當(dāng)原數(shù)的絕對值小于1時,n是負(fù)數(shù).解答:解:將361000000用科學(xué)記數(shù)法表示為3.61×1.故選C.3、C【解析】太陽相對地球較遠(yuǎn)且大,其發(fā)出的光線可認(rèn)為是平行光線.【詳解】臺燈、手電筒、路燈發(fā)出的光線是由點光源發(fā)出的光線,所形成的投影是中心投影;太陽相對地球較遠(yuǎn)且大,其發(fā)出的光線可認(rèn)為是平行光線.故選C【點睛】本題主要考查了中心投影、平行投影的概念.4、B【解析】試題分析:設(shè)這兩年平均每年綠地面積的增長率是x,則過一年時間的綠地面積為1+x,過兩年時間的綠地面積為(1+x)2,根據(jù)綠地面積增加44%即可列方程求解.設(shè)這兩年平均每年綠地面積的增長率是x,由題意得(1+x)2=1+44%解得x1=0.2,x2=-2.2(舍)故選B.考點:一元二次方程的應(yīng)用點評:提升對實際問題的理解能力是數(shù)學(xué)學(xué)習(xí)的指導(dǎo)思想,因而此類問題是中考的熱點,在各種題型中均有出現(xiàn),一般難度不大,需特別注意.5、B【解析】連接AC,交BD于O,過點E作EH⊥BC于H,由正方形的性質(zhì)及等腰直角三角形的性質(zhì)可得∠ADF=∠ABD=∠BCE=∠CBE=45°,可得∠ABE=135°,根據(jù)外角性質(zhì)可得∠AFD=∠FAB+∠ABF>45°,利用平角定義可得∠AFB<135°,即可證明∠AFB≠∠ABE,可對①進(jìn)行判斷;由EH⊥BC可證明EH//AB,根據(jù)平行線的性質(zhì)可得∠HEG=∠FAB,根據(jù)角的和差關(guān)系可證明∠DAF=∠CEG,即可證明△ADF∽△GCE;可對②進(jìn)行判斷,由EH//AB可得△HEG∽△BAG,根據(jù)相似三角形的性質(zhì)即可得出BG=2HG,根據(jù)等腰直角三角形性質(zhì)可得CH=BH,進(jìn)而可得CG=2BG,可對③進(jìn)行判斷;根據(jù)正方形的性質(zhì)可得OA=BE,∠AOF=∠FBE=90°,利用AAS可證明△AOF≌△EBF,可得AF=EF,可對④進(jìn)行判斷;綜上即可得答案.【詳解】如圖,連接AC,交BD于O,過點E作EH⊥BC于H,∵ABCD是正方形,△BCE是等腰直角三角形,∴∠ADF=∠ABD=∠BCE=∠CBE=45°,∴∠ABE=135°,∵∠AFD=∠BAF+∠ABF=∠BAF+45°>45°,∴∠AFB=180°-∠AFD<135°,∴∠AFB≠∠ABE,∴△AFB與△ABE不相似,故①錯誤,∵EH⊥BC,∠ABC=90°,∴EH//AB,∴∠HEG=∠FAB,∴∠AFD=∠FAB+∠ABD=45°+∠HEG=∠CEG,又∵∠ADB=∠GCE=45°,∴△ADF∽△GCE,故②正確,∵EH//AB,∴△HEG∽△BAG,∴,∵△BCE是等腰直角三角形,∴EH=CH=BH=BC=AB,∴=,即BG=2HG,∴CH=BH=3HG,∴CG=CH+HG=4HG,∴CG=2BG,故③錯誤,∵ABCD是正方形,△BCE是等腰直角三角形,∴∠AOF=90°,∠FBE=∠DBC+∠CBE=45°+45°=90°,OA=AB,BE=BC,∴∠AOF=∠FBE,OA=BE,在△AOF和△EBF中,,∴△AOF≌△EBF,∴AF=EF,故④正確,綜上所述:正確的結(jié)論有②④,故選:B.【點睛】本題考查正方形的性質(zhì)、等腰直角三角形的性質(zhì)、全等三角形的判定與性質(zhì)及相似三角形的判定與性質(zhì),熟練掌握相關(guān)判定定理及性質(zhì)是解題關(guān)鍵.6、C【分析】利用平行四邊形的性質(zhì)分割平行四邊形即可.【詳解】解:如圖所示,這樣的不同的直線一共可以畫出三條,故答案為:1.【點睛】本題考查平行四邊形的性質(zhì),解題的關(guān)鍵是掌握平行四邊形的中心對稱性.7、A【解析】將m代入關(guān)于x的一元二次方程x2+nx+m=0,通過解該方程即可求得m+n的值.【詳解】解:∵m是關(guān)于x的一元二次方程x2+nx+m=0的根,

∴m2+nm+m=0,

∴m(m+n+1)=0;

又∵m≠0,

∴m+n+1=0,

解得m+n=-1;

故選:A.【點睛】本題考查了一元二次方程的解的定義.一元二次方程ax2+bx+c=0(a≠0)的解一定滿足該一元二次方程的關(guān)系式.8、A【詳解】解:∵拋物線解析式,令,解得:,∴拋物線與軸的交點為(0,4),令,得到,∴拋物線與軸的交點分別為(,0),(1,0).綜上,拋物線與坐標(biāo)軸的交點個數(shù)為1.故選A.【點睛】本題考查拋物線與軸的交點,解一元一次、二次方程.9、B【分析】根據(jù)針恰好指向白色扇形的概率得到黑、白兩種顏色的扇形的面積比為1:7,計算即可.【詳解】解:∵指針恰好指向白色扇形的穊率為,∴黑、白兩種顏色的扇形的面積比為1:7,∴∠AOB=×360°=45°,故選:B.【點睛】本題考查的知識點是求圓心角的度數(shù),根據(jù)概率得出黑、白兩種顏色的扇形的面積比為1:7是解此題的關(guān)鍵.10、B【解析】分析:根據(jù)一元二次方程的解的定義,把x=1代入方程得關(guān)于k的一次方程1-3+k=0,然后解一次方程即可.詳解:把x=1代入方程得1+k-3=0,

解得k=1.

故選B.點睛:本題考查了一元二次方程的解:能使一元二次方程左右兩邊相等的未知數(shù)的值是一元二次方程的解.二、填空題(每小題3分,共24分)11、【分析】先由數(shù)據(jù)的平均數(shù)公式求得x,再根據(jù)方差的公式計算即可.【詳解】∵數(shù)據(jù)1,2,x,4的平均數(shù)是2,∴,解得:,∴方差.故答案為:.【點睛】本題考查了平均數(shù)與方差的定義,平均數(shù)是所有數(shù)據(jù)的和除以數(shù)據(jù)的個數(shù);方差是一組數(shù)據(jù)中各數(shù)據(jù)與它們的平均數(shù)的差的平方的平均數(shù).12、【分析】利用幾何概率等于陰影部分的面積與三角形的面積之比即可得出答案.【詳解】,,,∴是直角三角形,設(shè)圓的半徑為r,利用三角形的面積有即解得∴陰影部分的面積為∵三角形的面積為∴飛鏢落在陰影部分的概率為故答案為:.【點睛】本題主要考查幾何概率,掌握幾何概率的求法是解題的關(guān)鍵.13、15π【分析】圓錐的側(cè)面積=π×底面半徑×母線長,把相應(yīng)數(shù)值代入即可求解.【詳解】解:圓錐的側(cè)面積=π×3×5=15πcm2故答案為:15π.【點睛】本題考查圓錐側(cè)面積公式的運用,掌握公式是關(guān)鍵.14、1【分析】作AC⊥y軸于C,BD⊥y軸于D,如圖,先證明△ACP≌△BDP得到S△ACP=S△BDP,利用等量代換和k的幾何意義得到=S△AOC+S△BOD=×|k1|+|k2|=4,然后利用k1<0,k2>0可得到k2-k1的值.【詳解】解:作AC⊥y軸于C,BD⊥y軸于D,如圖,∵點A與點B關(guān)于P成中心對稱.

∴P點為AB的中點,

∴AP=BP,

在△ACP和△BDP中,

∴△ACP≌△BDP(AAS),

∴S△ACP=S△BDP,

∴S△AOB=S△APO+S△BPO=S△AOC+S△BOD=×|k1|+|k2|=4,∴|k1|+|k2|=1

∵k1>0,k2<0,

∴k1-k2=1.

故答案為1.【點睛】本題考查了比例系數(shù)k的幾何意義:在反比例函數(shù)y=圖象中任取一點,過這一個點向x軸和y軸分別作垂線,與坐標(biāo)軸圍成的矩形的面積是定值|k|.在反比例函數(shù)的圖象上任意一點向坐標(biāo)軸作垂線,這一點和垂足以及坐標(biāo)原點所構(gòu)成的三角形的面積是|k|,且保持不變.也考查了反比例函數(shù)的性質(zhì).15、1【分析】作PE⊥OA,再根據(jù)角平分線的性質(zhì)得出PE=PD即可得出答案.【詳解】過P作PE⊥OA于點E,∵點P是∠AOB平分線OC上一點,PD⊥OB,∴PE=PD,∵PD=1,∴PE=1,∴點P到邊OA的距離是1.故答案為1.【點睛】本題考查角平分線的性質(zhì),關(guān)鍵在于牢記角平分線的性質(zhì)并靈活運用.16、120°【解析】根據(jù)圓錐的側(cè)面積公式S=πrl得出圓錐的母線長,再結(jié)合扇形面積公式即可求出圓心角的度數(shù).【詳解】∵側(cè)面積為3π,∴圓錐側(cè)面積公式為:S=πrl=π×1×l=3π,解得:l=3,∴扇形面積為3π=,解得:n=120,∴側(cè)面展開圖的圓心角是120度.故答案為:120°.【點睛】此題主要考查了圓錐的側(cè)面積公式應(yīng)用以及與展開圖扇形面積關(guān)系,求出圓錐的母線長是解決問題的關(guān)鍵.17、8【分析】過A作AB⊥x軸,根據(jù)正弦的定義和點A的坐標(biāo)求出AB,OA的長,根據(jù)勾股定理計算即可.【詳解】如圖,過A作AB⊥x軸,∴,∵,∴,∵,∴AB=6,∴,根據(jù)勾股定理得:,即m=8,故答案為8.【點睛】本題考查的是銳角三角函數(shù)的定義、坐標(biāo)與圖形的性質(zhì),掌握直角三角形中,銳角的正弦是其對邊與斜邊的比是解題的關(guān)鍵.18、【分析】利用反比例函數(shù)k的幾何意義得出a-b=4?OE,a-b=5?OF,求出=6,即可求出答案.【詳解】如圖,∵由題意知:a-b=4?OE,a-b=5?OF,∴OE=,OF=,又∵OE+OF=6,∴=6,∴a-b=,故答案為:.【點睛】本題考查了反比例函數(shù)圖象上點的坐標(biāo)特征,能求出方程=6是解此題的關(guān)鍵.三、解答題(共66分)19、(1)AD=9;(2)AD=【分析】(1)連接BE,證明△ACD≌△BCE,得到AD=BE,在Rt△BAE中,AB=6,AE=3,求出BE,得到答案;(2)連接BE,證明△ACD∽△BCE,得到,求出BE的長,得到AD的長.【詳解】解:(1)如圖1,連接BE,∵∠ACB=∠DCE=90°,∴∠ACB+∠ACE=∠DCE+∠ACE,即∠BCE=∠ACD,又∵AC=BC,DC=EC,在△ACD和△BCE中,,∴△ACD≌△BCE,∴AD=BE,∵AC=BC=6,∴AB=6,∵∠BAC=∠CAE=45°,∴∠BAE=90°,在Rt△BAE中,AB=6,AE=3,∴BE=9,∴AD=9;(2)如圖2,連接BE,在Rt△ACB中,∠ABC=∠CED=30°,tan30°=,∵∠ACB=∠DCE=90°,∴∠BCE=∠ACD,∴△ACD∽△BCE,∴,∵∠BAC=60°,∠CAE=30°,∴∠BAE=90°,又AB=6,AE=8,∴BE=10,∴AD=.考點:相似三角形的判定與性質(zhì);全等三角形的判定與性質(zhì);勾股定理.20、(1)或;(2)存在,或;(3)【分析】(1)根據(jù)已知條件先求出函數(shù)解析式,然后根據(jù)平行得到,得出,又結(jié)合矩形面積=,可求出結(jié)果;(2)先由已知條件推到出點E在A點左側(cè),然后求出C,D兩點坐標(biāo),再分以下兩種情況:①當(dāng);②當(dāng),得出,進(jìn)而可得出結(jié)果;(3)聯(lián)立一次函數(shù)和反比例函數(shù)的解析式得出方程組,消去y得出關(guān)于x的一元二次方程,解出x的值,再分以下兩種情況結(jié)合三角形的三邊關(guān)系求解:①5為等腰三角形的腰長;②5為等腰三角形底邊長.進(jìn)而得出k的值.【詳解】解:(1)當(dāng)時,,如圖,由軸,軸,易得.∴,即①,而矩形面積為2,∴②.∴由①②得為1或2.∴或.(2)∵,∴,,∴,而,∴點不可能在點右側(cè),當(dāng)在點左側(cè)時,,聯(lián)立或即,.①當(dāng),∴.而,,,,即.∴.②當(dāng),∴.即,∴.綜上所述,或.(3)當(dāng)和時,聯(lián)立,得,,,.①當(dāng)5為等腰三角形的腰長時,.②當(dāng)5為等腰三角形底邊長時,.而,∴舍去.因此,綜上,.【點睛】本題是一次函數(shù)和反比例函數(shù)的綜合題,主要考查一次函數(shù)和反比例函數(shù)解析式的求法,圖象與性質(zhì),兩函數(shù)交點問題以及相似的判定與性質(zhì),綜合性較強(qiáng),有一定的難度.21、(1)詳見解析;(2)詳見解析;(3)1.【分析】(1)根據(jù)圓周角定理,易得∠PCB+∠OCB=90,即OC⊥CP,故PC是⊙O的切線;

(2)連接MA,MB,由圓周角定理可得∠ACM=∠BCM,進(jìn)而可得△MBN∽△MCB,故;代入數(shù)據(jù)即可求得答案.【詳解】,,又,,又是的直徑,,,即,是的半徑,是的切線;,,,又,,,;連接,點是的中點,∴,,,,,,,又是的直徑,,,,,.【點睛】此題主要考查圓的切線的判定及圓周角定理的運用和相似三角形的判定和性質(zhì)的應(yīng)用,證得是解題的關(guān)鍵.22、另一根為-3,m=1【分析】設(shè)方程的另一個根為a,由根與系數(shù)的關(guān)系得出a+1=﹣m,a×1=﹣3,解方程組即可.【詳解】設(shè)方程的另一個根為a,則由根與系數(shù)的關(guān)系得:a+1=﹣m,a×1=﹣3,解得:a=﹣3,m=1,答:方程的另一根為﹣3,m=1.【點睛】本題考查了根與系數(shù)的關(guān)系和一元二次方程的解,能熟記根與系數(shù)的關(guān)系的內(nèi)容是解答本題的關(guān)鍵.23、(1)見解析;(2)1.【分析】(1)連接OD,OE,BD,證△OBE≌△ODE(SSS),得∠ODE=∠ABC=90°;(2)證△DEC為等邊三角形,得DC=DE=2.【詳解】(1)證明:連接OD,OE,BD,

∵AB為圓O的直徑,

∴∠ADB=∠BDC=90°,

在Rt△BDC中,E為斜邊BC的中點,

∴DE=BE,

在△OBE和△ODE中,

,

∴△OBE≌△ODE(SSS),

∴∠ODE=∠ABC=90°,

則DE為圓O的切線;

(2)在Rt△ABC中,∠BAC=30°,

∴BC=AC,

∵BC=2DE=4,

∴AC=8,

又∵∠C=10°,DE=CE,

∴△DEC為等邊三角形,即DC=DE=2,

則AD=AC-DC=1.【點睛】考核知識點:切線的判定和性質(zhì).24、(1)150°;(2)詳見解析;(3)15°【分析】(1)根據(jù)旋轉(zhuǎn)的性質(zhì),利用補角性質(zhì)即可解題;(2)根據(jù)旋轉(zhuǎn)后的對應(yīng)邊相等即可解題;(3)利用外角性質(zhì)即可解題.【詳解】解:(1)∵點D,A,C在同一直線上,∴∠BAD=180°-∠BAC=180°-30°=150°,∴△ABC旋轉(zhuǎn)了150°;(2)根據(jù)旋轉(zhuǎn)的性質(zhì),可知AC=AE,∴△AEC是等腰三角形;(3)根據(jù)旋轉(zhuǎn)的性質(zhì)可知,∠CAE=∠BAD=150°,AC=AE,∴∠AEC=∠ACE=(180°-∠CAE)÷2=(180°-150°)÷2=15°.【點睛】本題考查了旋轉(zhuǎn)變換的性質(zhì),理解旋轉(zhuǎn)三要素:旋轉(zhuǎn)中心、旋轉(zhuǎn)方向、旋轉(zhuǎn)角度的概念、掌握旋轉(zhuǎn)變換的性質(zhì)是解題的關(guān)鍵.25、(1)點橫坐標(biāo)為;(2)27;(3)正確,理由見解析.【分析】(1)先判斷點A與點B關(guān)于y軸對稱得到PA∥x軸,所以P點的縱坐標(biāo)為a2,P點的橫坐標(biāo)為a2+1,則利用PA=AB得到a2+1-a=a-(-a),然后求出a得到優(yōu)點”P的橫坐標(biāo);

(2)由于A點為PB的中點,根據(jù)線段的中點坐標(biāo)公式得到a=,即2a-b=3,然后利用整體代入的方法計算代數(shù)式的值;(3)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論