安徽省淮南市田家庵區(qū)2022年數(shù)學九年級第一學期期末達標測試試題含解析_第1頁
安徽省淮南市田家庵區(qū)2022年數(shù)學九年級第一學期期末達標測試試題含解析_第2頁
安徽省淮南市田家庵區(qū)2022年數(shù)學九年級第一學期期末達標測試試題含解析_第3頁
安徽省淮南市田家庵區(qū)2022年數(shù)學九年級第一學期期末達標測試試題含解析_第4頁
安徽省淮南市田家庵區(qū)2022年數(shù)學九年級第一學期期末達標測試試題含解析_第5頁
免費預覽已結束,剩余15頁可下載查看

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數(shù)學期末模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.如圖,四邊形內(nèi)接于,為延長線上一點,若,則的度數(shù)為()A. B. C. D.2.如圖,AB是圓O的直徑,CD是圓O的弦,若,則()A. B. C. D.3.下列命題錯誤的是()A.經(jīng)過三個點一定可以作圓B.經(jīng)過切點且垂直于切線的直線必經(jīng)過圓心C.同圓或等圓中,相等的圓心角所對的弧相等D.三角形的外心到三角形各頂點的距離相等4.下列方程中不是一元二次方程的是()A. B. C. D.5.兩個相似三角形的對應邊分別是15cm和23cm,它們的周長相差40cm,則這兩個三角形的周長分別是()A.45cm,85cm B.60cm,100cm C.75cm,115cm D.85cm,125cm6.如圖,?ABCD的對角線相交于點O,且,過點O作交BC于點E,若的周長為10,則?ABCD的周長為A.14 B.16 C.20 D.187.若點在反比例函數(shù)上,則的值是()A. B. C. D.8.如圖,AB∥EF,CD⊥EF,∠BAC=50°,則∠ACD=()A.120° B.130° C.140° D.150°9.下列事件屬于必然事件的是()A.在一個裝著白球和黑球的袋中摸球,摸出紅球B.拋擲一枚硬幣2次都是正面朝上C.在標準大氣壓下,氣溫為15℃時,冰能熔化為水D.從車間剛生產(chǎn)的產(chǎn)品中任意抽一個,是次品10.將二次函數(shù)y=ax2的圖象先向下平移2個單位,再向右平移3個單位,截x軸所得的線段長為4,則a=()A.1 B. C. D.11.如圖,正方形OABC的兩邊OA、OC分別在x軸、y軸上,點D(5,3)在邊AB上,以C為中心,把CDB旋轉90°,則旋轉后點D的對應點的坐標是()A.(2,10) B.(﹣2,0)C.(2,10)或(﹣2,0) D.(10,2)或(﹣2,0)12.如圖,從一張腰長為,頂角為的等腰三角形鐵皮中剪出一個最大的扇形,用此剪下的扇形鐵皮圍成一個圓錐的側面(不計損耗),則該圓錐的底面半徑為()A. B. C. D.二、填空題(每題4分,共24分)13.若代數(shù)式有意義,則的取值范圍是____________.14.化簡:=______.15.已知實數(shù)在數(shù)軸上的位置如圖所示,則化簡__________.16.計算:cos45°=______.17.如圖,已知正方ABCD內(nèi)一動點E到A、B、C三點的距離之和的最小值為,則這個正方形的邊長為_____________18.如圖,PA,PB是⊙O的兩條切線,切點分別為A,B,連接OA,OP,AB,設OP與AB相交于點C,若∠APB=60°,OC=2cm,則PC=_________cm.三、解答題(共78分)19.(8分)已知方程是關于的一元二次方程.(1)求證:方程總有兩個實數(shù)根;(2)若方程的兩個根之和等于兩根之積,求的值.20.(8分)已知在△ABC中,AB=AC,∠BAC=α,直線l經(jīng)過點A(不經(jīng)過點B或點C),點C關于直線l的對稱點為點D,連接BD,CD.(1)如圖1,①求證:點B,C,D在以點A為圓心,AB為半徑的圓上;②直接寫出∠BDC的度數(shù)(用含α的式子表示)為;(2)如圖2,當α=60°時,過點D作BD的垂線與直線l交于點E,求證:AE=BD;(3)如圖3,當α=90°時,記直線l與CD的交點為F,連接BF.將直線l繞點A旋轉的過程中,在什么情況下線段BF的長取得最大值?若AC=2a,試寫出此時BF的值.21.(8分)某數(shù)學興趣小組,利用樹影測量樹高,如圖(1),已測出樹AB的影長AC為12米,并測出此時太陽光線與地面成30°夾角.(1)求出樹高AB;(2)因水土流失,此時樹AB沿太陽光線方向倒下,在傾倒過程中,樹影長度發(fā)生了變化,假設太陽光線與地面夾角保持不變.求樹的最大影長.(用圖(2)解答)22.(10分)解方程:x2﹣4x﹣12=1.23.(10分)如圖,是由兩個長方體組合而成的一個立體圖形的主視圖和左視圖,根據(jù)圖中所標尺寸(單位:).(1)直接寫出上下兩個長方休的長、寬、商分別是多少:(2)求這個立體圖形的體積.24.(10分)某商場經(jīng)銷-種進價為每千克50元的水產(chǎn)品,據(jù)市場分析,每千克售價為60元時,月銷售量為,銷售單價每漲1元時,月銷售量就減少,針對這種情況,請解答以下問題:(1)當銷售單價定為65元時,計算銷售量和月銷售利潤;(2)若想在月銷售成本不超過12000元的情況下,使得月銷售利潤達到8000元,銷售單價應定為多少?25.(12分)(1)某學校“智慧方園”數(shù)學社團遇到這樣一個題目:如圖1,在△ABC中,點O在線段BC上,∠BAO=30°,∠OAC=75°,AO=,BO:CO=1:3,求AB的長.經(jīng)過社團成員討論發(fā)現(xiàn),過點B作BD∥AC,交AO的延長線于點D,通過構造△ABD就可以解決問題(如圖2).請回答:∠ADB=°,AB=.(2)請參考以上解決思路,解決問題:如圖3,在四邊形ABCD中,對角線AC與BD相交于點O,AC⊥AD,AO=,∠ABC=∠ACB=75°,BO:OD=1:3,求DC的長.26.(1)計算.sin30°tan45°-cos30°tan30°+sin45°tan60°(2)已知cos(180°﹣a)=﹣cosa,請你根據(jù)給出的公式試求cos120°的值

參考答案一、選擇題(每題4分,共48分)1、D【分析】根據(jù)圓內(nèi)接四邊形的對角互補,先求出∠ADC的度數(shù),再求∠ADE的度數(shù)即可.【詳解】解:四邊形內(nèi)接于-,.故選:.【點睛】本題考查的是內(nèi)接四邊形的對角互補,也就是內(nèi)接四邊形的外角等于和它不相鄰的內(nèi)對角.2、A【分析】根據(jù)同弧所對的圓周角相等可得,再根據(jù)圓直徑所對的圓周角是直角,可得,再根據(jù)三角形內(nèi)角和定理即可求出的度數(shù).【詳解】∵∴∵AB是圓O的直徑∴∴故答案為:A.【點睛】本題考查了圓內(nèi)接三角形的角度問題,掌握同弧所對的圓周角相等、圓直徑所對的圓周角是直角、三角形內(nèi)角和定理是解題的關鍵.3、A【解析】選項A,經(jīng)過不在同一直線上的三個點可以作圓;選項B,經(jīng)過切點且垂直于切線的直線必經(jīng)過圓心,正確;選項C,同圓或等圓中,相等的圓心角所對的弧相等,正確;選項D,三角形的外心到三角形各頂點的距離相等,正確;故選A.4、C【分析】根據(jù)一元二次方程的定義進行排除選擇即可,一元二次方程的關鍵是方程中只包含一個未知數(shù),且未知數(shù)的指數(shù)為2.【詳解】根據(jù)一元二次方程的定義可知含有一個未知數(shù)且未知數(shù)的指數(shù)是2的方程為一元二次方程,所以A,B,D均符合一元二次方程的定義,C選項展開移項整理后不含有未知數(shù),不符合一元二次方程的定義,所以錯誤,故選C.【點睛】本題考查的是一元二次方程的定義,熟知此定義是解題的關鍵.5、C【解析】根據(jù)相似三角形的周長的比等于相似比列出方程,解方程即可.【詳解】設小三角形的周長為xcm,則大三角形的周長為(x+40)cm,

由題意得,,

解得,x=75,

則x+40=115,故選C.6、C【解析】由平行四邊形的性質得出,,,再根據(jù)線段垂直平分線的性質得出,由的周長得出,即可求出平行四邊形ABCD的周長.【詳解】解:四邊形ABCD是平行四邊形,,,,,,的周長為10,,平行四邊形ABCD的周長;故選:C.【點睛】本題考查了平行四邊形的性質、線段垂直平分線的性質以及三角形、平行四邊形周長的計算;熟練掌握平行四邊形的性質,并能進行推理計算是解決問題的關鍵.7、C【分析】將點(-2,-6)代入,即可計算出k的值.【詳解】∵點(-2,-6)在反比例函數(shù)上,∴k=(-2)×(-6)=12,故選:C.【點睛】本題考查了待定系數(shù)法求反比例函數(shù)解析式,明確函數(shù)圖象上點的坐標符合函數(shù)解析式是解題關鍵.8、C【解析】試題分析:如圖,延長AC交EF于點G;∵AB∥EF,∴∠DGC=∠BAC=50°;∵CD⊥EF,∴∠CDG=90°,∴∠ACD=90°+50°=140°,故選C.考點:垂線的定義;平行線的性質;三角形的外角性質9、C【分析】必然事件就是一定發(fā)生的事件,即發(fā)生的概率是1的事件,據(jù)此逐一判斷即可.【詳解】A.在一個裝著白球和黑球的袋中摸球,摸出紅球,一定不會發(fā)生,是不可能事件,不符合題意,B.拋擲一枚硬幣2次都是正面朝上,可能朝上,也可能朝下,是隨機事件,不符合題意,C.在標準大氣壓下,氣溫為15℃時,冰能熔化為水,是必然事件,符合題意.D.從車間剛生產(chǎn)的產(chǎn)品中任意抽一個,可能是正品,也可能是次品,是隨機事件,不符合題意,故選:C.【點睛】本題考查了必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件.不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.10、D【分析】根據(jù)題意可以寫出平移后的函數(shù)解析式,然后根據(jù)截x軸所得的線段長為4,可以求得a的值,本題得以解決.【詳解】解:二次函數(shù)y=ax2的圖象先向下平移2個單位,再向右平移3個單位之后的函數(shù)解析式為y=a(x﹣3)2﹣2,當y=0時,ax2﹣6ax+9a﹣2=0,設方程ax2﹣6ax+9a﹣2=0的兩個根為x1,x2,則x1+x2=6,x1x2=,∵平移后的函數(shù)截x軸所得的線段長為4,∴|x1﹣x2|=4,∴(x1﹣x2)2=16,∴(x1+x2)2﹣4x1x2=16,∴36﹣4×=16,解得,a=,故選:D.【點睛】本題考查解二次函數(shù)綜合題,解題關鍵是根據(jù)題意可以寫出平移后的函數(shù)解析式.11、C【分析】分順時針旋轉和逆時針旋轉兩種情況討論解答即可.【詳解】解:∵點D(5,3)在邊AB上,∴BC=5,BD=5﹣3=2,①若順時針旋轉,則點在x軸上,O=2,所以,(﹣2,0),②若逆時針旋轉,則點到x軸的距離為10,到y(tǒng)軸的距離為2,所以,(2,10),綜上所述,點的坐標為(2,10)或(﹣2,0).故選:C.【點睛】本題考查了坐標與圖形變化﹣旋轉,正方形的性質,難點在于分情況討論.12、A【分析】根據(jù)等腰三角形的性質得到的長,再利用弧長公式計算出弧的長,設圓錐的底面圓半徑為,根據(jù)圓錐的側面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長可得到.【詳解】過作于,,,,弧的長,設圓錐的底面圓的半徑為,則,解得.故選A.【點睛】本題考查了圓錐的計算:圓錐的側面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長.二、填空題(每題4分,共24分)13、x≥1且x≠1【分析】根據(jù)二次根式的性質和分式的意義,被開方數(shù)大于等于0,分母不等于0,即可求解.【詳解】解:根據(jù)二次根式有意義,分式有意義得:x-1≥0且x-1≠0,

解得:x≥1且x≠1.

故答案為:x≥1且x≠1.【點睛】本題考查的知識點為:分式有意義,分母不為0;二次根式的被開方數(shù)是非負數(shù),難度不大.14、.【解析】試題解析:原式故答案為15、【分析】根據(jù)數(shù)軸得出-1<a<0<1,根據(jù)二次根式的性質得出|a-1|-|a+1|,去掉絕對值符號合并同類項即可.【詳解】∵從數(shù)軸可知:-1<a<0<1,

=|a-1|-|a+1|

=-a+1-a-1

=-2a.

故答案為-2a.【點睛】此題考查二次根式的性質,絕對值以及數(shù)軸的應用,解題關鍵在于掌握利用數(shù)軸可以比較任意兩個實數(shù)的大小,即在數(shù)軸上表示的兩個實數(shù),右邊的總比左邊的大,在原點左側,絕對值大的反而?。?6、【分析】根據(jù)特殊角的三角函數(shù)值計算即可.【詳解】解:根據(jù)特殊角的三角函數(shù)值可知:cos45°=,故答案為.【點睛】本題主要考查了特殊角的三角函數(shù)值,比較簡單,熟練掌握特殊角的三角函數(shù)值是解答的關鍵.17、【分析】將△ABE繞點A旋轉60°至△AGF的位置,根據(jù)旋轉的性質可證△AEF和△ABG為等邊三角形,即可證明EF=AE,GF=BE,所以根據(jù)兩點之間線段最短EA+EB+EC=GF+EF+EC≥GC,表示Rt△GMC的三邊,根據(jù)勾股定理即可求出正方形的邊長.【詳解】解:如圖,將△ABE繞點A旋轉60°至△AGF的位置,連接EF,GC,BG,過點G作BC的垂線交CB的延長線于點M.設正方形的邊長為2m,∵四邊形ABCD為正方形,∴AB=BC=2m,∠ABC=∠ABM=90°,∵△ABE繞點A旋轉60°至△AGF,∴,∴△AEF和△ABG為等邊三角形,∴AE=EF,∠ABG=60°,∴EA+EB+EC=GF+EF+EC≥GC,∴GC=,∵∠GBM=90°-∠ABG=30°,∴在Rt△BGM中,GM=m,BM=,Rt△GMC中,勾股可得,即:,解得:,∴邊長為.故答案為:.【點睛】本題考查正方形的性質,旋轉的性質,等邊三角形的性質和判定,含30°角的直角三角形,兩點之間線段最短,勾股定理.能根據(jù)旋轉作圖,得出EA+EB+EC=GF+EF+EC≥GC是解決此題的關鍵.18、6【分析】由切線長定理可知PA=PB,由垂徑定理可知OP垂直平分AB,所以OP平分,可得,利用直角三角形30度角的性質可得OA、OP的長,即可.【詳解】解:PA,PB是⊙O的兩條切線,由垂徑定理可知OP垂直平分AB,OP平分,在中,在中,故答案為:6【點睛】本題主要考查了圓的性質與三角形的性質,涉及的知識點主要有切線長定理、垂徑定理、等腰三角形的性質、直角三角形30度角的性質,靈活的將圓與三角形相結合是解題的關鍵.三、解答題(共78分)19、(1)詳見解析;(2)1.【分析】(1)根據(jù)一元二次方程根的判別式,即可得到結論;(2)由一元二次方程根與系數(shù)的關系,得,,進而得到關于m的方程,即可求解.【詳解】(1)∵方程是關于的一元二次方程,∴,∵,∴方程總有兩個實根;(2)設方程的兩根為,,則,根據(jù)題意得:,解得:,(舍去),∴的值為1.【點睛】本題主要考查一元二次方程根的判別式以及根與系數(shù)的關系,掌握一元二次方程根的判別式以及根與系數(shù)的關系是解題的關鍵.20、(1)①詳見解析;②α;(2)詳見解析;(3)當B、O、F三點共線時BF最長,(+)a【分析】(1)①由線段垂直平分線的性質可得AD=AC=AB,即可證點B,C,D在以點A為圓心,AB為半徑的圓上;②由等腰三角形的性質可得∠BAC=2∠BDC,可求∠BDC的度數(shù);(2)連接CE,由題意可證△ABC,△DCE是等邊三角形,可得AC=BC,∠DCE=60°=∠ACB,CD=CE,根據(jù)“SAS”可證△BCD≌△ACE,可得AE=BD;(3)取AC的中點O,連接OB,OF,BF,由三角形的三邊關系可得,當點O,點B,點F三點共線時,BF最長,根據(jù)等腰直角三角形的性質和勾股定理可求,,即可求得BF【詳解】(1)①連接AD,如圖1.∵點C與點D關于直線l對稱,∴AC=AD.∵AB=AC,∴AB=AC=AD.∴點B,C,D在以A為圓心,AB為半徑的圓上.②∵AD=AB=AC,∴∠ADB=∠ABD,∠ADC=∠ACD,∵∠BAM=∠ADB+∠ABD,∠MAC=∠ADC+∠ACD,∴∠BAM=2∠ADB,∠MAC=2∠ADC,∴∠BAC=∠BAM+∠MAC=2∠ADB+2∠ADC=2∠BDC=α∴∠BDC=α故答案為:α.(2連接CE,如圖2.∵∠BAC=60°,AB=AC,∴△ABC是等邊三角形,∴BC=AC,∠ACB=60°,∵∠BDC=α,∴∠BDC=30°,∵BD⊥DE,∴∠CDE=60°,∵點C關于直線l的對稱點為點D,∴DE=CE,且∠CDE=60°∴△CDE是等邊三角形,∴CD=CE=DE,∠DCE=60°=∠ACB,∴∠BCD=∠ACE,且AC=BC,CD=CE,∴△BCD≌△ACE(SAS)∴BD=AE,(3)如圖3,取AC的中點O,連接OB,OF,BF,,F(xiàn)是以AC為直徑的圓上一點,設AC中點為O,∵在△BOF中,BO+OF≥BF,當B、O、F三點共線時BF最長;如圖,過點O作OH⊥BC,∵∠BAC=90°,AB=AC=2a,∴,∠ACB=45°,且OH⊥BC,∴∠COH=∠HCO=45°,∴OH=HC,∴,∵點O是AC中點,AC=2a,∴,∴,∴BH=3a,∴,∵點C關于直線l的對稱點為點D,∴∠AFC=90°,∵點O是AC中點,∴,∴,∴當B、O、F三點共線時BF最長;最大值為(+)a.【點睛】本題是三角形綜合題,考查了全等三角形的判定和性質,等腰三角形的性質,勾股定理,三角形的三邊關系,靈活運用相關的性質定理、綜合運用知識是解題的關鍵.21、(1)樹AB的高約為4m;(2)8m.【解析】(1)AB=ACtan30°=12×=(米).答:樹高約為米.(2)如圖(2),B1N=AN=AB1sin45°=×=(米).NC1=NB1tan60°=×=(米).AC1=AN+NC1=+.當樹與地面成60°角時影長最大AC2(或樹與光線垂直時影長最大或光線與半徑為AB的⊙A相切時影長最大)AC2=2AB2=;(1)在直角△ABC中,已知∠ACB=30°,AC=12米.利用三角函數(shù)即可求得AB的長;(2)在△AB1C1中,已知AB1的長,即AB的長,∠B1AC1=45°,∠B1C1A=30°.過B1作AC1的垂線,在直角△AB1N中根據(jù)三角函數(shù)求得AN,BN;再在直角△B1NC1中,根據(jù)三角函數(shù)求得NC1的長,再根據(jù)當樹與地面成60°角時影長最大,根據(jù)三角函數(shù)即可求解.22、x1=6,x2=﹣2.【解析】試題分析:用因式分解法解方程即可.試題解析:或所以23、(1)立體圖形下面的長方體的長、寬、高分別為;上面的長方體的長、寬、高分別為;(2)這個立體圖形的體積為.【分析】(1)根據(jù)主視圖可分別得出兩個長方體的長和高,根據(jù)左視圖可分別得出兩個長方體的寬和高,由此可得兩個長方體的長、寬、高;(2)分別利用長方體的體積計算公式求得兩個長方體的體積,再求和即可.【詳解】解:(1)根據(jù)視圖可知,立體圖形下面的長方體的長、寬、高分別為,上面的長方體的長、寬、高分別為(2)這個立體圖形的體積=,=,答:這個立體圖形的體積為.【點睛】本題考查已知幾何體的三視圖求體積.熟記主視圖反應幾何體的長和高,左視圖反應幾何體的寬和高,俯視圖反應幾何體的長和寬是解決此題的關鍵.24、(1)銷售量:450kg;月銷售利潤:6750元;(2)銷售單價定為90元時,月銷售利潤達到8000元,且銷售成本不超過12000元【分析】(1)利用每千克水產(chǎn)品的銷售利潤×月銷售量=月銷售利潤列出函數(shù)即可;(2)由函數(shù)值為8000,列出一元二次方程解決問題.【詳解】解:(1)銷售量:,月銷售利潤:(元);(2)因為月銷售成本不超過12000元,∴月銷售數(shù)量不超過;設銷售定價為元,由題意得:,解得;當時,月銷售量為,滿足題意;當時,月銷售量為,不合題意,應舍去.∴銷售單價定為90元時,月銷售利潤達到8000元,且銷售成本不超過12000元.【點睛】此題考查了一元二次方程的應用,利用基本數(shù)量關系:每千克水產(chǎn)品的銷售利潤×月銷售量=月銷售利潤列函數(shù)解析式,用配方法求最大值以及函數(shù)與方程的關系.25、(1)75;4;(2)CD=4.【分析】(1)根據(jù)平行線的性質可得出∠ADB=∠OAC=75°,結合∠

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論