下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年九上數(shù)學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題3分,共30分)1.如圖2,在平面直角坐標系中,點的坐標為(1,4)、(5,4)、(1、),則外接圓的圓心坐標是A.(2,3) B.(3,2) C.(1,3) D.(3,1)2.在數(shù)軸上,點A所表示的實數(shù)為3,點B所表示的實數(shù)為a,⊙A的半徑為2,下列說法中不正確的是()A.當1<a<5時,點B在⊙A內(nèi)B.當a<5時,點B在⊙A內(nèi)C.當a<1時,點B在⊙A外D.當a>5時,點B在⊙A外3.4月24日是中國航天日,1970年的這一天,我國自行設計、制造的第一顆人造地球衛(wèi)星“東方紅一號”成功發(fā)射,標志著中國從此進入了太空時代,它的運行軌道,距地球最近點439000米.將439000用科學記數(shù)法表示應為()A.0.439×106 B.4.39×106 C.4.39×105 D.139×1034.若.則下列式子正確的是()A. B. C. D.5.二次函數(shù)的圖像如圖所示,它的對稱軸為直線,與軸交點的橫坐標分別為,,且.下列結論中:①;②;③;④方程有兩個相等的實數(shù)根;⑤.其中正確的有()A.②③⑤ B.②③ C.②④ D.①④⑤6.已知是關于的一元二次方程的解,則等于()A.1 B.-2 C.-1 D.27.下列立體圖形中,主視圖是三角形的是(
).A. B. C. D.8.在ABC中,∠C=90°,AB=5,BC=4,以A為圓心,以3為半徑畫圓,則點C與⊙A的位置關系是()A.在⊙A外 B.在⊙A上 C.在⊙A內(nèi) D.不能確定9.下列事件中是隨機事件的是()A.校運會上立定跳遠成績?yōu)?0米B.在只裝有5個紅球的袋中,摸出一個紅球C.慈溪市明年五一節(jié)是晴天D.在標準大氣壓下,氣溫3°C時,冰熔化為水10.若點(﹣2,y1),(﹣1,y2),(3,y3)在雙曲線y=(k<0)上,則y1,y2,y3的大小關系是()A.y1<y2<y3 B.y3<y2<y1 C.y2<y1<y3 D.y3<y1<y2二、填空題(每小題3分,共24分)11.在一個不透明的盒子中裝有6個白球,x個黃球,它們除顏色不同外,其余均相同.若從中隨機摸出一個球,摸到白球的概率為,則x=_______.12.使二次根式有意義的x的取值范圍是_____.13.如圖,將矩形紙片ABCD(AD>DC)的一角沿著過點D的直線折疊,使點A與BC邊上的點E重合,折痕交AB于點F.若BE:EC=m:n,則AF:FB=14.九年級學生在畢業(yè)前夕,某班每名同學都為其他同學寫一段畢業(yè)感言,全班共寫了2256段畢業(yè)感言,如果該班有x名同學,根據(jù)題意列出方程為____.15.如圖,AC是⊙O的直徑,∠ACB=60°,連接AB,過A、B兩點分別作⊙O的切線,兩切線交于點P.若已知⊙O的半徑為1,則△PAB的周長為_____.16.如果∠A是銳角,且sinA=,那么∠A=________゜.17.如圖,是⊙O上的點,若,則___________度.18.如圖,在以O為圓心的兩個同心圓中,大圓的弦AB是小圓的切線,P為切點,如果AB=8cm,小圓直徑徑為6cm,那么大圓半徑為_____cm.三、解答題(共66分)19.(10分)如圖,在△ABC中,AB=AC,M為BC的中點,MH⊥AC,垂足為H.(1)求證:;(2)若AB=AC=10,BC=1.求CH的長.20.(6分)(1)計算:.(2)如圖,正方形紙板在投影面上的正投影為,其中邊與投影面平行,與投影面不平行.若正方形的邊長為厘米,,求其投影的面積.21.(6分)(1)計算:;(2)解分式方程:;(3)解不等式組:.22.(8分)在四邊形ABCD中,對角線AC、BD相交于點O,設銳角∠DOC=α,將△DOC按逆時針方向旋轉得到△D′OC′(0°<旋轉角<90°)連接AC′、BD′,AC′與BD′相交于點M.(1)當四邊形ABCD是矩形時,如圖1,請猜想AC′與BD′的數(shù)量關系以及∠AMB與α的大小關系,并證明你的猜想;(2)當四邊形ABCD是平行四邊形時,如圖2,已知AC=kBD,請猜想此時AC′與BD′的數(shù)量關系以及∠AMB與α的大小關系,并證明你的猜想;(3)當四邊形ABCD是等腰梯形時,如圖3,AD∥BC,此時(1)AC′與BD′的數(shù)量關系是否成立?∠AMB與α的大小關系是否成立?不必證明,直接寫出結論.23.(8分)每年九月開學前后是文具盒的銷售旺季,商場專門設置了文具盒專柜李經(jīng)理記錄了天的銷售數(shù)量和銷售單價,其中銷售單價(元/個)與時間第天(為整數(shù))的數(shù)量關系如圖所示,日銷量(個)與時間第天(為整數(shù))的函數(shù)關系式為:直接寫出與的函數(shù)關系式,并注明自變量的取值范圍;設日銷售額為(元),求(元)關于(天)的函數(shù)解析式;在這天中,哪一天銷售額(元)達到最大,最大銷售額是多少元;由于需要進貨成本和人員工資等各種開支,如果每天的營業(yè)額低于元,文具盒專柜將虧損,直接寫出哪幾天文具盒專柜處于虧損狀態(tài)24.(8分)在平面直角坐標系xOy中,拋物線y=x2+bx+c交x軸于A(﹣1,0),B(3,0)兩點,交y軸于點C.(1)如圖1,求拋物線的解析式;(2)如圖2,點P是第一象限拋物線上的一個動點,連接CP交x軸于點E,過點P作PK∥x軸交拋物線于點K,交y軸于點N,連接AN、EN、AC,設點P的橫坐標為t,四邊形ACEN的面積為S,求S與t之間的函數(shù)關系式(不要求寫出自變量t的取值范圍);(3)如圖3,在(2)的條件下,點F是PC中點,過點K作PC的垂線與過點F平行于x軸的直線交于點H,KH=CP,點Q為第一象限內(nèi)直線KP下方拋物線上一點,連接KQ交y軸于點G,點M是KP上一點,連接MF、KF,若∠MFK=∠PKQ,MP=AE+GN,求點Q坐標.25.(10分)快樂的寒假即將來臨小明、小麗和小芳三名同學打算各自隨機選擇到,兩個書店做志愿者服務活動.(1)求小明、小麗2名同學選擇不同書店服務的概率;(請用列表法或樹狀圖求解)(2)求三名同學在同一書店參加志愿服務活動的概率.(請用列表法或樹狀圖求解)26.(10分)計算:(1)(2)解方程:
參考答案一、選擇題(每小題3分,共30分)1、D【解析】根據(jù)垂徑定理的推論“弦的垂直平分線必過圓心”,作兩條弦的垂直平分線,交點即為圓心.解答:解:根據(jù)垂徑定理的推論,則作弦AB、AC的垂直平分線,交點O1即為圓心,且坐標是(3,1).故選D.2、B【解析】試題解析:由于圓心A在數(shù)軸上的坐標為3,圓的半徑為2,∴當d=r時,⊙A與數(shù)軸交于兩點:1、5,故當a=1、5時點B在⊙A上;當d<r即當1<a<5時,點B在⊙A內(nèi);當d>r即當a<1或a>5時,點B在⊙A外.由以上結論可知選項A、C、D正確,選項B錯誤.故選B.點睛:若用d、r分別表示點到圓心的距離和圓的半徑,則當d>r時,點在圓外;當d=r時,點在圓上;當d<r時,點在圓內(nèi).3、C【分析】科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】解:將439000用科學記數(shù)法表示為4.39×1.
故選C.【點睛】此題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.4、A【分析】直接利用比例的性質(zhì)分別判斷即可得出答案.【詳解】∵2x-7y=0,∴2x=7y.A.,則2x=7y,故此選項正確;B.,則xy=14,故此選項錯誤;C.,則2y=7x,故此選項錯誤;D.,則7x=2y,故此選項錯誤.故選A.【點睛】本題考查了比例的性質(zhì),正確將比例式變形是解題的關鍵.5、A【分析】利用拋物線開口方向得到a<0,利用對稱軸位置得到b>0,利用拋物線與y軸的交點在x軸下方得c<0,則可對①進行判斷;根據(jù)二次函數(shù)的對稱性對②③進行判斷;利用拋物線與直線y=2的交點個數(shù)對④進行判斷,利用函數(shù)與坐標軸的交點列出不等式即可判斷⑤.【詳解】∵拋物線開口向下,∴a<0,∵對稱軸為直線∴b=-2a>0∵拋物線與y軸的交點在x軸下方,∴c<-1,∴abc>0,所以①錯誤;∵,對稱軸為直線∴故,②正確;∵對稱軸x=1,∴當x=0,x=2時,y值相等,故當x=0時,y=c<0,∴當x=2時,y=,③正確;如圖,作y=2,與二次函數(shù)有兩個交點,故方程有兩個不相等的實數(shù)根,故④錯誤;∵當x=-1時,y=a-b+c=3a+c>0,當x=0時,y=c<-1∴3a>1,故,⑤正確;故選A.【點睛】本題考查了二次函數(shù)圖象與系數(shù)的關系:對于二次函數(shù)y=ax2+bx+c(a≠0),二次項系數(shù)a決定拋物線的開口方向和大?。攁>0時,拋物線向上開口;當a<0時,拋物線向下開口;一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置.當a與b同號時(即ab>0),對稱軸在y軸左;當a與b異號時(即ab<0),對稱軸在y軸右;常數(shù)項c決定拋物線與y軸交點位置:拋物線與y軸交于(0,c).也考查了二次函數(shù)的性質(zhì).6、C【分析】方程的解就是能使方程的左右兩邊相等的未知數(shù)的值,因而把x=-1代入方程就得到一個關于m+n的方程,就可以求出m+n的值.【詳解】將x=1代入方程式得1+m+n=0,
解得m+n=-1.
故選:C.【點睛】此題考查一元二次方程的解,解題關鍵在于把求未知系數(shù)的問題轉化為解方程的問題.7、B【分析】根據(jù)從正面看得到的圖形是主視圖,可得圖形的主視圖.【詳解】A、C、D主視圖是矩形,故A、C、D不符合題意;B、主視圖是三角形,故B正確;故選B.【點睛】本題考查了簡單幾何體的三視圖,圓錐的主視圖是三角形.8、B【分析】根據(jù)勾股定理求出AC的值,根據(jù)點與圓的位關系特點,判斷即可.【詳解】解:由勾股定理得:∵AC=半徑=3,∴點C與⊙A的位置關系是:點C在⊙A上,故選:B.【點睛】本題考查了點與圓的位置關系定理和勾股定理等知識點的應用,點與圓(圓的半徑是r,點到圓心的距離是d)的位置關系有3種:d=r時,點在圓上;d<r點在圓內(nèi);d>r點在圓外.掌握以上知識是解題的關鍵.9、C【分析】根據(jù)隨機事件的定義,就是可能發(fā)生也可能不發(fā)生的事件進行判斷即可.【詳解】解:A.“校運會上立定跳遠成績?yōu)?0米”是不可能事件,因此選項A不符合題意;B.“在只裝有5個紅球的袋中,摸出一個紅球”是必然事件,因此選項B不符合題意;C.“慈溪市明年五一節(jié)是晴天”可能發(fā)生,也可能不發(fā)生,是隨機事件,因此選項C符合題意;D.“在標準大氣壓下,氣溫3°C時,冰熔化為水”是必然事件,因此選項D不符合題意;故選:C.【點睛】本題考查了隨機事件、必然事件、不可能事件的定義,理解隨機事件的定義是解題的關鍵.10、D【解析】分析:直接利用反比例函數(shù)的性質(zhì)分析得出答案.詳解:∵點(﹣1,y1),(﹣1,y1),(3,y3)在雙曲線y=(k<0)上,∴(﹣1,y1),(﹣1,y1)分布在第二象限,(3,y3)在第四象限,每個象限內(nèi),y隨x的增大而增大,∴y3<y1<y1.故選:D.點睛:此題主要考查了反比例函數(shù)的性質(zhì),正確掌握反比例函數(shù)增減性是解題關鍵.二、填空題(每小題3分,共24分)11、1【分析】直接以概率求法得出關于x的等式進而得出答案.【詳解】解:由題意得:,解得,故答案為:1.【點睛】本題考查了概率的意義,正確把握概率的求解公式是解題的關鍵.12、x≤1【分析】直接利用二次根式有意義的條件分析得出答案.【詳解】解:∵二次根式有意義,∴1﹣x≥0,解得:x≤1.故答案為:x≤1.【點睛】此題主要考查了二次根式有意義的條件,正確把握定義是解題關鍵.13、【分析】由折疊得,AF:FB=EF:FB.證明△BEF∽△CDE可得EF:FB=DE:EC,由BE:EC=m:n可求解.【詳解】∵BE=1,EC=2,∴BC=1.∵BC=AD=DE,∴DE=1.sin∠EDC=;∵∠DEF=90°,∴∠BEF+∠CED=90°.又∠BEF+∠BFE=90°,∴∠BFE=∠CED.又∠B=∠C,∴△BEF∽△CDE.∴EF:FB=DE:EC.∵BE:EC=m:n,∴可設BE=mk,EC=nk,則DE=(m+n)k.∴EF:FB=DE:EC=∵AF=EF,∴AF:FB=14、(x﹣1)x=2256【分析】根據(jù)題意得:每人要寫(x-1)條畢業(yè)感言,有x個人,然后根據(jù)題意可列出方程.【詳解】根據(jù)題意得:每人要寫(x?1)條畢業(yè)感言,有x個人,∴全班共寫:(x?1)x=2256,故答案為:(x?1)x=2256.【點睛】此題考查一元二次方程,解題關鍵在于結合實際列一元二次方程即可.15、【解析】根據(jù)圓周角定理的推論及切線長定理,即可得出答案解:∵AC是⊙O的直徑,∴∠ABC=90°,∵∠ACB=60°,∴∠BAC=30°,∴CB=1,AB=,∵AP為切線,∴∠CAP=90°,∴∠PAB=60°,又∵AP=BP,∴△PAB為正三角形,∴△PAB的周長為3.點睛:本題主要考查圓周角定理及切線長定理.熟記圓的相關性質(zhì)是解題的關鍵.16、1【分析】直接利用特殊角的三角函數(shù)值得出答案.【詳解】解:∵∠A是銳角,且sinA=,∴∠A=1°.故答案為1.考點:特殊角的三角函數(shù)值.17、130°.【分析】在優(yōu)弧AB上取點D,連接AD,BD,根據(jù)圓周角定理先求出∠ADB的度數(shù),再利用圓內(nèi)接四邊形對角互補進行求解即可.【詳解】在優(yōu)弧AB上取點D,連接AD,BD,∵∠AOB=100°,∴∠ADB=∠AOB=50°,∴∠ACB=180°﹣∠ADB=130°.故答案為130°.【點睛】本題考查了圓周角定理,圓內(nèi)接四邊形對角互補的性質(zhì),正確添加輔助線,熟練應用相關知識是解題的關鍵.18、1【分析】連接OA,由切線的性質(zhì)可知OP⊥AB,由垂徑定理可知AP=PB,在Rt△OAP中,利用勾股定理可求得OA的長.【詳解】如圖,連接OP,AO,∵AB是小圓的切線,∴OP⊥AB,∵OP過圓心,∴AP=BP=AB=4cm,∵小圓直徑為6cm,∴OP=3cm,在Rt△AOP中,由勾股定理可得OA==1(cm),即大圓的半徑為1cm,故答案為:1.【點睛】此題考查垂徑定理,勾股定理,在圓中垂徑定理通常與勾股定理一起運用求半徑、弦、弦心距中的一個量的值.三、解答題(共66分)19、(1)詳見解析;(2)3.2【分析】(1)證明,利用線段比例關系可得;(2)利用等腰三角形三線合一和勾股定理求出AM的長,再由(1)中關系式可得AH長度,可得CH的長.【詳解】解:(1)證明:∵,為的中點,∴∴∵∴∴∴∴∴(2)解:∵,,M為的中點,∴,在中,,由(1)得∴.【點睛】本題考查了相似三角形的判定和性質(zhì),勾股定理,等腰三角形三線合一的性質(zhì),解題的關鍵是利用相似三角形得到線段比例關系.20、(1);(2).【分析】(1)代入特殊角的三角函數(shù)值,根據(jù)實數(shù)的混合運算法則計算即可;(2)作BE⊥CC1于點E,利用等腰直角三角形的性質(zhì)求得的長即可求得BC的正投影的長,即可求得答案.【詳解】(1);(2)過點B作BE⊥CC1于點E,在中,,,∴,∵⊥,⊥,且BE⊥CC1,∴四邊形為矩形,∴,∵,∴.【點睛】本題主要考查了平行投影的性質(zhì),特殊角的三角函數(shù)值,等腰直角三角形的性質(zhì),本題理解并掌握正投影的特征是解題的關鍵:正投影是在平行投影中,投影線垂直于投影面產(chǎn)生的投影.21、(1);(2);(3).【分析】(1)原式利用零指數(shù)冪、負整數(shù)指數(shù)冪法則,絕對值的代數(shù)意義,特殊角的三角函數(shù)值,以及二次根式性質(zhì)計算即可求出值;(2)分式方程去分母轉化為整式方程,求出整式方程的解得到的值,經(jīng)檢驗即可得到分式方程的解;(3)分別求出每一個不等式的解集,根據(jù)口訣:同大取大、同小取小、大小小大中間找、大大小小無解了確定不等式組的解集即可.【詳解】解:(1),,,.(2),去分母得:,解得:,經(jīng)檢驗是原方程的根.(3),解不等式①得,解不等式②得,∴原不等式組的解集為為:.【點睛】此題考查了解分式方程,以及實數(shù)的運算、不等式組的解法,熟練掌握運算法則是解本題的關鍵.22、(1)BD′=AC′,∠AMB=α,見解析;(2)AC′=kBD′,∠AMB=α,見解析;(3)AC′=BD′成立,∠AMB=α不成立【分析】(1)通過證明△BOD′≌△AOC′得到BD′=AC′,∠OBD′=∠OAC′,根據(jù)三角形內(nèi)角和定理求出∠AMB=∠AOB=∠COD=α;(2)依據(jù)(1)的思路證明△BOD′∽△AOC′,得到AC′=kBD′,設BD′與OA相交于點N,由相似證得∠BNO=∠ANM,再根據(jù)三角形內(nèi)角和求出∠AMB=α;(3)先利用等腰梯形的性質(zhì)OA=OD,OB=OC,再利用旋轉證得,由此證明△≌△,得到BD′=AC′及對應角的等量關系,由此證得∠AMB=α不成立.【詳解】解:(1)AC′=BD′,∠AMB=α,證明:在矩形ABCD中,AC=BD,OA=OC=AC,OB=OD=BD,∴OA=OC=OB=OD,又∵OD=OD′,OC=OC′,∴OB=OD′=OA=OC′,∵∠D′OD=∠C′OC,∴180°﹣∠D′OD=180°﹣∠C′OC,∴∠BOD′=∠AOC′,∴△BOD′≌△AOC′,∴BD′=AC′,∴∠OBD′=∠OAC′,設BD′與OA相交于點N,∴∠BNO=∠ANM,∴180°﹣∠OAC′﹣∠ANM=180°﹣∠OBD′﹣∠BNO,即∠AMB=∠AOB=∠COD=α,綜上所述,BD′=AC′,∠AMB=α,(2)AC′=kBD′,∠AMB=α,證明:∵在平行四邊形ABCD中,OB=OD,OA=OC,又∵OD=OD′,OC=OC′,∴OC′=OA,OD′=OB,∵∠D′OD=∠C′OC,∴180°﹣∠D′OD=180°﹣∠C′OC,∴∠BOD′=∠AOC′,∴△BOD′∽△AOC′,∴BD′:AC′=OB:OA=BD:AC,∵AC=kBD,∴AC′=kBD′,∵△BOD′∽△AOC′,設BD′與OA相交于點N,∴∠BNO=∠ANM,∴180°﹣∠OAC′﹣∠ANM=180°﹣∠OBD′﹣∠BNO,即∠AMB=∠AOB=α,綜上所述,AC′=kBD′,∠AMB=α,(3)∵在等腰梯形ABCD中,OA=OD,OB=OC,由旋轉得:,∴,即,∴△≌△,∴AC′=BD′,,設BD′與OA相交于點N,∵∠ANB=+∠AMB=,,∴,∴AC′=BD′成立,∠AMB=α不成立.【點睛】此題是變化類圖形問題,根據(jù)變化的圖形找到共性證明三角形全等,由此得到對應邊相等,對應角相等,在(3)中,對應角的位置發(fā)生變化,故而角度值發(fā)生了變化.23、(1)y=,(2)w=,在這15天中,第9天銷售額達到最大,最大銷售額是1元,(3)第13天、第14天、第15天這3天,專柜處于虧損狀態(tài).【分析】(1)用待定系數(shù)法可求與的函數(shù)關系式;(2)利用總銷售額=銷售單價×銷售量,分三種情況,找到(元)關于(天)的函數(shù)解析式,然后根據(jù)函數(shù)的性質(zhì)即可找到最大值.(3)先根據(jù)第(2)問的結論判斷出在這三段內(nèi)哪一段內(nèi)會出現(xiàn)虧損,然后列出不等式求出x的范圍,即可找到答案.【詳解】解:(1)當時,設直線的表達式為將代入到表達式中得解得∴當時,直線的表達式為∴y=,(2)由已知得:w=py.當1≤x≤5時,w=py=(-x+15)(20x+180)=-20x2+120x+2700=-20(x-3)2+2880,當x=3時,w取最大值2880,當5<x≤9時,w=10(20x+180)=200x+1800,∵x是整數(shù),200>0,∴當5<x≤9時,w隨x的增大而增大,∴當x=9時,w有最大值為200×9+1800=1,當9<x≤15時,w=10(-60x+900)=-600x+9000,∵-600<0,∴w隨x的增大而減小,又∵x=9時,w=-600×9+9000=1.∴當9<x≤15時,W的最大值小于1綜合得:w=,在這15天中,第9天銷售額達到最大,最大銷售額是1元.(3)當時,當時,y有最小值,最小值為∴不會有虧損當時,當時,y有最小值,最小值為∴不會有虧損當時,解得∵x為正整數(shù)∴∴第13天、第14天、第15天這3天,專柜處于虧損狀態(tài).【點睛】本題主要考查二次函數(shù)和一次函數(shù)的實際應用,掌握二次函數(shù)和一次函數(shù)的性質(zhì)是解題的關鍵.24、(1)y=x2﹣2x﹣3;(2)S=t2+t;(3)Q(,).【分析】(1)函數(shù)的表達式為:y=(x+1)(x﹣3),即可求解;(2)tan∠PCH===,求出OE=,利用S=S△NCE+S△NAC,即可求解;(3)證明△CNP≌△KRH,求出點P(4,5
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 未來五年凍干精制破傷風抗毒素行業(yè)市場營銷創(chuàng)新戰(zhàn)略制定與實施分析研究報告
- 2025年車聯(lián)網(wǎng)技術解決方案指南
- 2025年河南工業(yè)職業(yè)技術學院單招模擬試卷及答案解析【必刷】
- 自動駕駛車輛遠程駕駛(Teleoperation)操作員資質(zhì)認證合同
- 板房拆遷殘值回收協(xié)議
- 2025年鼠標手康復訓練指導協(xié)議
- 幼兒園安全保育操作規(guī)范與培訓指南
- 物流配送崗位操作標準流程
- 臨床靜脈輸液治療操作技能測試題
- 六西格瑪黑帶培訓模擬試題
- JCT 2126.1-2023 水泥制品工藝技術規(guī)程 第1部分:混凝土和鋼筋混凝土排水管 (正式版)
- 高中地理選擇性必修二知識點
- 航天禁(限)用工藝目錄(2021版)-發(fā)文稿(公開)
- GB/T 4937.34-2024半導體器件機械和氣候試驗方法第34部分:功率循環(huán)
- 人教版小學數(shù)學一年級下冊全冊同步練習含答案
- 加油站防投毒應急處理預案
- 閉合導線計算(自動計算表)附帶注釋及教程
- 項目1 變壓器的運行與應用《電機與電氣控制技術》教學課件
- 網(wǎng)店運營中職PPT完整全套教學課件
- 北師大版八年級數(shù)學下冊課件【全冊】
- 關于提高護士輸液時PDA的掃描率的品管圈PPT
評論
0/150
提交評論