版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年浙江省金華市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________一、單選題(50題)1.
2.()。A.-2B.-1C.0D.23.設(shè)函數(shù)Y=e-x,則Y'等于().A.A.-ex
B.ex
C.-e-xQ258
D.e-x
4.設(shè)球面方程為(x-1)2+(y+2)2+(z-3)2=4,則該球的球心坐標(biāo)與半徑分別為()A.(-1,2,-3);2B.(-1,2,-3);4C.(1,-2,3);2D.(1,-2,3);45.A.A.0B.1C.2D.36.()。A.0
B.1
C.2
D.+∞
7.
8.收入預(yù)算的主要內(nèi)容是()
A.銷售預(yù)算B.成本預(yù)算C.生產(chǎn)預(yù)算D.現(xiàn)金預(yù)算
9.
10.A.
B.
C.
D.
11.對(duì)于微分方程y"-2y'+y=xex,利用待定系數(shù)法求其特解y*時(shí),下列特解設(shè)法正確的是()。A.y*=(Ax+B)ex
B.y*=x(Ax+B)ex
C.y*=Ax3ex
D.y*=x2(Ax+B)ex
12.
13.
14.若x0為f(x)的極值點(diǎn),則().A.A.f'(x0)必定存在,且f'(x0)=0
B.f'(x0)必定存在,但f'(x0)不一定等于零
C.f'(x0)不存在或f'(x0)=0
D.f'(x0)必定不存在
15.交換二次積分次序等于().A.A.
B.
C.
D.
16.設(shè)z=y2x,則等于().A.2xy2x-11
B.2y2x
C.y2xlny
D.2y2xlny
17.
18.
19.
等于().
20.
21.22.A.A.lnx+CB.-lnx+CC.f(lnx)+CD.-f(lnx)+C23.函數(shù)y=sinx在區(qū)間[0,π]上滿足羅爾定理的ξ等于().A.A.0B.π/4C.π/2D.π24.()。A.3B.2C.1D.025.()A.A.
B.
C.
D.
26.
27.A.2/5B.0C.-2/5D.1/228.設(shè)函數(shù)z=sin(xy2),則等于()。A.cos(xy2)
B.xy2cos(xy2)
C.2xyeos(xy2)
D.y2cos(xy2)
29.
30.
31.函數(shù)在(-3,3)內(nèi)展開成x的冪級(jí)數(shù)是()。
A.
B.
C.
D.
32.
33.
34.
A.絕對(duì)收斂
B.條件收斂
C.發(fā)散
D.收斂性不能判定
35.進(jìn)行鋼筋混凝土受彎構(gòu)件斜截面受剪承載力設(shè)計(jì)時(shí),防止發(fā)生斜拉破壞的措施是()。
A.控制箍筋間距和箍筋配筋率B.配置附加箍筋和吊筋C.采取措施加強(qiáng)縱向受拉鋼筋的錨固D.滿足截面限值條件36.設(shè)y1,y2為二階線性常系數(shù)微分方程y"+p1y+p2y=0的兩個(gè)特解,則C1y1+C2y2()A.為所給方程的解,但不是通解B.為所給方程的解,但不一定是通解C.為所給方程的通解D.不為所給方程的解37.設(shè)y=cos4x,則dy=()。A.
B.
C.
D.
38.A.
B.
C.
D.
39.由曲線y=1/X,直線y=x,x=2所圍面積為
A.A.
B.B.
C.C.
D.D.
40.
41.A.exln2
B.e2xln2
C.ex+ln2
D.e2x+ln2
42.
A.僅有水平漸近線
B.既有水平漸近線,又有鉛直漸近線
C.僅有鉛直漸近線
D.既無水平漸近線,又無鉛直漸近線
43.
44.
A.(-2,2)
B.(-∞,0)
C.(0,+∞)
D.(-∞,+∞)
45.A.f(x)+CB.f'(x)+CC.f(x)D.f'(x)
46.
47.
等于()A.A.
B.
C.
D.0
48.下列命題正確的是()A.A.
B.
C.
D.
49.
50.在空間直角坐標(biāo)系中,方程x2-4(y-1)2=0表示()。A.兩個(gè)平面B.雙曲柱面C.橢圓柱面D.圓柱面
二、填空題(20題)51.求
52.
53.
54.設(shè)z=ln(x2+y),則全微分dz=__________。
55.
56.
57.
58.
59.
60.
61.
62.
63.微分方程y'=2的通解為__________。
64.
65.=______.
66.
67.
68.
69.冪級(jí)數(shù)的收斂半徑為______.
70.
三、計(jì)算題(20題)71.
72.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
73.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
74.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.
75.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則
76.證明:
77.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.
78.求曲線在點(diǎn)(1,3)處的切線方程.
79.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).
80.
81.
82.
83.求微分方程的通解.
84.將f(x)=e-2X展開為x的冪級(jí)數(shù).
85.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.
86.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.
87.
88.
89.求微分方程y"-4y'+4y=e-2x的通解.
90.
四、解答題(10題)91.
92.
93.
94.
95.
96.
97.y=xlnx的極值與極值點(diǎn).
98.
99.確定函數(shù)f(x,y)=3axy-x3-y3(a>0)的極值點(diǎn).
100.
五、高等數(shù)學(xué)(0題)101.某廠每天生產(chǎn)某產(chǎn)品q個(gè)單位時(shí),總成本C(q)=0.5q2+36q+9800(元),問每天生產(chǎn)多少時(shí),平均成本最低?
六、解答題(0題)102.
參考答案
1.C
2.A
3.C本題考查的知識(shí)點(diǎn)為復(fù)合函數(shù)導(dǎo)數(shù)的運(yùn)算.
由復(fù)合函數(shù)的導(dǎo)數(shù)鏈?zhǔn)椒▌t知
可知應(yīng)選C.
4.C
5.B
6.B
7.B解析:
8.A解析:收入預(yù)算的主要內(nèi)容是銷售預(yù)算。
9.B解析:
10.C據(jù)右端的二次積分可得積分區(qū)域D為選項(xiàng)中顯然沒有這個(gè)結(jié)果,于是須將該區(qū)域D用另一種不等式(X-型)表示.故D又可表示為
11.D特征方程為r2-2r+1=0,特征根為r=1(二重根),f(x)=xex,α=1為特征根,因此原方程特解y*=x2(Ax+B)ex,因此選D。
12.C解析:
13.C
14.C本題考查的知識(shí)點(diǎn)為函數(shù)極值點(diǎn)的性質(zhì).
若x0為函數(shù)y=f(x)的極值點(diǎn),則可能出現(xiàn)兩種情形:
(1)f(x)在點(diǎn)x0處不可導(dǎo),如y=|x|,在點(diǎn)x0=0處f(x)不可導(dǎo),但是點(diǎn)x0=0為f(a)=|x|的極值點(diǎn).
(2)f(x)在點(diǎn)x0可導(dǎo),則由極值的必要條件可知,必定有f'(x0)=0.
從題目的選項(xiàng)可知應(yīng)選C.
本題常見的錯(cuò)誤是選A.其原因是考生將極值的必要條件:“若f(x)在點(diǎn)x0可導(dǎo),且x0為f(x)的極值點(diǎn),則必有f'(x0)=0”認(rèn)為是極值的充分必要條件.
15.B本題考查的知識(shí)點(diǎn)為交換二次積分次序.
由所給二次積分可知積分區(qū)域D可以表示為
1≤y≤2,y≤x≤2,
交換積分次序后,D可以表示為
1≤x≤2,1≤y≤x,
故應(yīng)選B.
16.D本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)的運(yùn)算.
z=y2x,若求,則需將z認(rèn)定為指數(shù)函數(shù).從而有
可知應(yīng)選D.
17.D
18.C
19.D解析:本題考查的知識(shí)點(diǎn)為牛頓一萊布尼茨公式和定積分的換元法.
因此選D.
20.D解析:
21.B
22.C
23.C本題考查的知識(shí)點(diǎn)為羅爾定理的條件與結(jié)論.
由于y=sinx在[0,π]上連續(xù),在(0,π)內(nèi)可導(dǎo),且y|x=0=0=y|x=π,可知y=sinx在[0,π]上滿足羅爾定理,因此必定存在ξ∈(0,π),使y'|x=ξ=cosx|x=ξ=cosξ=0,從而應(yīng)有.
故知應(yīng)選C.
24.A
25.A
26.B
27.A本題考查了定積分的性質(zhì)的知識(shí)點(diǎn)
28.D本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)的運(yùn)算。由z=sin(xy2),知可知應(yīng)選D。
29.A解析:
30.A
31.B
32.A
33.A解析:
34.A
35.A
36.B如果y1,y2這兩個(gè)特解是線性無關(guān)的,即≠C,則C1y1+C2y2是其方程的通解?,F(xiàn)在題設(shè)中沒有指出是否線性無關(guān),所以可能是通解,也可能不是通解,故選B。
37.B
38.D本題考查的知識(shí)點(diǎn)為牛頓一萊布尼茨公式和定積分的換元法。因此選D。
39.B本題考查了曲線所圍成的面積的知識(shí)點(diǎn),
曲線y=1/X與直線y=x,x=2所圍成的區(qū)域D如下圖所示,
40.D解析:
41.B因f'(x)=f(x)·2,即y'=2y,此為常系數(shù)一階線性齊次方程,其特征根為r=2,所以其通解為y=Ce2x,又當(dāng)x=0時(shí),f(0)=ln2,所以C=ln2,故f(x)=e2xln2.
42.A
43.D
44.A
45.C
46.D
47.D本題考查的知識(shí)點(diǎn)為定積分的性質(zhì).
由于當(dāng)f(x)可積時(shí),定積分的值為一個(gè)確定常數(shù),因此總有
故應(yīng)選D.
48.D
49.A
50.A
51.
=0。
52.
本題考查的知識(shí)點(diǎn)為:參數(shù)方程形式的函數(shù)求導(dǎo).
53.F'(x)
54.
55.
56.
本題考查的知識(shí)點(diǎn)為冪級(jí)數(shù)的收斂半徑.
所給級(jí)數(shù)為缺項(xiàng)情形,
57.
58.
59.1
60.ln|1-cosx|+Cln|1-cosx|+C解析:
61.
62.-3e-3x-3e-3x
解析:
63.y=2x+C
64.
65.本題考查的知識(shí)點(diǎn)為定積分的換元積分法。設(shè)t=x/2,則x=2t,dx=2dt.當(dāng)x=0時(shí),t=0;當(dāng)x=π時(shí),t=π/2。因此
66.極大值為8極大值為8
67.33解析:
68.2/3
69.
解析:本題考查的知識(shí)點(diǎn)為冪級(jí)數(shù)的收斂半徑.
注意此處冪級(jí)數(shù)為缺項(xiàng)情形.
70.e2
71.
72.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%
73.
74.函數(shù)的定義域?yàn)?/p>
注意
75.由等價(jià)無窮小量的定義可知
76.
77.
78.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
79.
列表:
說明
80.
81.
82.
則
83.
84.
85.由二重積分物理意義知
86.
87.由一階線性微分方程通解公式有
88.
89.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
90.
91.
92.
93.
94.
95.
96.
97.y=xlnx的定義域?yàn)閤>0y'=1+lnx.令y'=0得駐點(diǎn)x1=e-1.當(dāng)0<x<e-1時(shí)y'<0;當(dāng)e-1<x時(shí)y'>0.可知x=e-1為y=xlnx的極小值點(diǎn).極小值為y=xlnx的定義域?yàn)閤>0y'=1+lnx.令y'=0得駐點(diǎn)x1=e-1.當(dāng)0<x<e-1時(shí),y'<0;當(dāng)e-1<x時(shí),y'>0.可知x=e-1為y=xlnx的極小
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 托運(yùn)物品活動(dòng)策劃方案(3篇)
- 燒烤氣氛活動(dòng)策劃方案(3篇)
- 監(jiān)獄戒毒場(chǎng)所后勤管理制度(3篇)
- 針灸推拿科管理制度目錄(3篇)
- 《GA 2114-2023警用服飾 禮服女皮鞋》專題研究報(bào)告
- 獸藥GMP培訓(xùn)課件
- 《GA 425.9-2003指紋自動(dòng)識(shí)別系統(tǒng)基礎(chǔ)技術(shù)規(guī)范 第9部分:指紋圖像數(shù)據(jù)轉(zhuǎn)換的技術(shù)條件》專題研究報(bào)告
- 2026河北石家莊城市更新集團(tuán)有限公司勞務(wù)派遣制人員招聘6人參考題庫(kù)附答案
- 交通警察執(zhí)法規(guī)范制度
- 2026湖北省定向鄭州大學(xué)選調(diào)生招錄備考題庫(kù)附答案
- GB/T 20322-2023石油及天然氣工業(yè)往復(fù)壓縮機(jī)
- 提撈采油安全操作規(guī)程
- DB3211-T 1048-2022 嬰幼兒日間照料托育機(jī)構(gòu)服務(wù)規(guī)范
- YY/T 1846-2022內(nèi)窺鏡手術(shù)器械重復(fù)性使用腹部沖吸器
- GB/T 5237.3-2017鋁合金建筑型材第3部分:電泳涂漆型材
- GB/T 3625-2007換熱器及冷凝器用鈦及鈦合金管
- GB/T 15390-2005工程用焊接結(jié)構(gòu)彎板鏈、附件和鏈輪
- GA 1016-2012槍支(彈藥)庫(kù)室風(fēng)險(xiǎn)等級(jí)劃分與安全防范要求
- 學(xué)生傷害事故處理辦法及案例分析
- 安全管理人員紅頭任命文件
- 6.項(xiàng)目成員工作負(fù)荷統(tǒng)計(jì)表
評(píng)論
0/150
提交評(píng)論