抗力的可靠度模型和統(tǒng)計(jì)分析_第1頁(yè)
抗力的可靠度模型和統(tǒng)計(jì)分析_第2頁(yè)
抗力的可靠度模型和統(tǒng)計(jì)分析_第3頁(yè)
抗力的可靠度模型和統(tǒng)計(jì)分析_第4頁(yè)
抗力的可靠度模型和統(tǒng)計(jì)分析_第5頁(yè)
已閱讀5頁(yè),還剩50頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

抗力的可靠度模型和統(tǒng)計(jì)分析Chapter4:ProbabilityModels&StatisticalAnalysisofLoads4.2ProbabilityModelsofLoads4.4RepresentativeValuesofLoads4.1LoadsandActionsContents4.5CombinationofLoadEffects4.3StatisticalAnalysisofLoads4.1LoadsandActionsChapter4

ProbabilityModelsandStatisticalAnalysisofLoads4.1LoadsandActions…1Anactionis:Anassemblyofconcentratedordistributedmechanicalforcesactingonastructure(directactions),orThecauseofdeformationsimposedonthestructureorconstrainedinit(indirectactions)4.1.1DefinitionsofLoadsandActionsActionDirectAction—LoadIndirectAction4.1LoadsandActions…24.1.2TypesofActions1.ClassificationaccordingtothevariationoftheirmagnitudewithtimePermanentaction,whichislikelytoactcontinuouslythroughoutagivenreferenceperiodandforwhichvariationsinmagnitudewithtimearesmallcomparedwiththemeanvalue.4.1LoadsandActions…34.1.2TypesofActions1.ClassificationaccordingtothevariationoftheirmagnitudewithtimeVariableaction,forwhichthevariationinmagnitudewithtimeisneithernegligibleinrelationtothemeanvaluenormonotonic.Accidentalaction,whichisunlikelytooccurwithasignificantvalueonagivenstructureoveragivenreferenceperiod.Impact,Explosion,RareEarthquake,Tornado,Fire,SevereCorrosion,Flood,etc.4.1LoadsandActions…42.ClassificationaccordingtotheirvariationwithspaceFixedaction,whichhasafixeddistributiononastructure;Freeaction,whichmayhaveanarbitraryspatialdistributionoverthestructurewithingivenlimits.3.ClassificationaccordingtothestructuralresponseStaticaction,i.e.notcausingsignificantaccelerationofthestructuralorstructuralelements;Dynamicaction,i.e.causingsignificantaccelerationofthestructuralorstructuralelements.4.1.2TypesofActions4.1LoadsandActions…5LoadCodefortheDesignofBuildingStructures(GB50009-2001)4.1.3DesignCodesforLoadsandActions4.1LoadsandActions…6MinimumDesignLoadsforBuildingsandOtherStructures(ASCE7-05)4.1.3DesignCodesforLoadsandActions4.1LoadsandActions…7BS_EN_1991-1-1_Eurocode_1:GravityLoadsBS_EN_1991-1-2_Eurocode_1:FireActionsBS_EN_1991-1-3_Eurocode_1:SnowloadsBS_EN_1991-1-4_Eurocode_1:WindActionsBS_EN_1991-1-5_Eurocode_1:ThermalActionsBS_EN_1991-1-6_Eurocode_1:ActionsduringExecutionBS_EN_1991-1-7_Eurocode_1:AccidentalActions4.1.3DesignCodesforLoadsandActions4.1LoadsandActions…8ProbabilityModelCode(JCSS,2001):PartII4.1.3DesignCodesforLoadsandActions4.1LoadsandActions…94.1.3DesignCodesforLoadsandActionsProbabilityModelCode(JCSS,2001):PartII4.2ProbabilisticModelsofLoadsChapter4

ProbabilityModelsandStatisticalAnalysisofLoads4.2ProbabilityModelsofLoads…14.2.1StochasticProcessModelofLoadsActually,loadsarerandomvariablesvaryingwithtimeinthedesignreferenceperiodi.e.loadsarerandomprocess.4.2ProbabilityModelsofLoads…24.2.1StochasticProcessModelofLoadsActually,loadsarerandomvariablesvaryingwithtimeinthedesignreferenceperiodi.e.loadsarerandomprocess.excitationintensityOccurrenceTime4.2ProbabilityModelsofLoads…34.2.2StationaryBinomialRandomProcess(FBCModel)AssumptionsofStationaryBinomialRandomProcessIngeneral,loadsaretreatedasstationarybinomialrandomprocess.(1)Thedesignreferenceperiodisdividedintorequalintervals(2)Ineachinterval,theprobabilityoftheloadQoccurringisp,whiletheprobabilityofnotoccurringis.(3)Ineachinterval,whentheloadQoccurs,itsmagnitudeisanon-negativerandomvariable,anditsprobabilitydistributionsduringdifferentintervalsareidentical.LettheprobabilitydistributionoftheloadQinintervalbedenotedbyThefunctioniscalledanarbitrarypoint-in-time

probabilitydistributionoftheloadQ.(4)Themagnitudesoftheloadduringdifferentintervalsareindependentrandomvariables,andtheyarealsoindependentoftheeventthattheloadoccursintheseintervals.FeaturesofStationaryBinomialRandomProcess(1)Theparametersofthestationarybinomialrandomprocessare:Theparametersandaredeterminedbystatisticalsurveysorexperientialjudgments.ThedistributiontypeofshouldbevalidatedbyK-Stest.4.2ProbabilityModelsofLoads…44.2ProbabilityModelsofLoads…5(2)Thesamplefunctionofcanberepresentedbyarectanglewavefunctionwithequalintervals.4.2ProbabilityModelsofLoads…64.2.2RandomVariableModelofLoads1.PrincipleofTransformationRandomProcessLoadModelRandomVariableLoadModelTheloadQisrepresentedbythemaximumvalueoftherandomprocessloadduringthedesignreferenceperiod.Obviously,thevalueisarandomvariable.representsthemeantimesofoccurringinthedesignreferenceperiodT.2.TheProbabilitydistributionof4.2ProbabilityModelsofLoads…74.2.2RandomVariableModelofLoads2.TheProbabilitydistributionofCase14.2ProbabilityModelsofLoads…84.2.2RandomVariableModelofLoads2.TheProbabilitydistributionofCase24.2ProbabilityModelsofLoads…93.beingnormaldistribution4.2ProbabilityModelsofLoads…104.beingExtremeⅠdistribution4.3StatisticalAnalysisofLoadsChapter4

ProbabilityModelsandStatisticalAnalysisofLoads4.3StatisticalAnalysisofLoads…14.3.1StatisticalAnalysisofPermanentLoad4.3StatisticalAnalysisofLoads…24.3.2StatisticalAnalysisofVariantLoads1.SustainedLiveLoad4.3StatisticalAnalysisofLoads…32.TransientLiveLoad4.3StatisticalAnalysisofLoads…44.3.3StatisticalAnalysisofEnvironmentalLoads1.WindLoadDon’tconsiderwinddirectionConsiderwinddirection4.3StatisticalAnalysisofLoads…52.SnowLoad4.4RepresentativeValuesofLoadsChapter4

ProbabilityModelsandStatisticalAnalysisofLoads4.4RepresentativeValuesofLoads…14.4.1RepresentativeValuev.s.DesignValueofaLoadTherepresentativevalueofaloadisavalueusedfortheverificationofalimitstate.1.RepresentativeValueofaLoadRepresentativevaluesgenerallyconsistofcharacteristicvalues,frequentvalues,quasi-permanentvalues,combinationvalues.2.DesignValueofaLoadDesignvalueofaloadisavalueobtainedbymultiplyingtherepresentativevaluebythepartialfactor.4.4RepresentativeValuesofLoads…24.4.2CharacteristicValueThecharacteristicvalueofaloadisthemaximumvalueoftheloadthatactsonthestructureduringthedesignreferenceperiod.1.DefinitionItistheprincipalrepresentativevaluewhendesigningstructures.Theotherrepresentativevaluesareobtainedbyconversionofthecharacteristicvalue.Itischoseneitheronastatisticalbasis,sothatitcanbeconsideredtohaveaspecialprobabilityofnotbeingexceededtowardsunfavorablevaluesduringthedesignreferenceperiod;oronacquiredexperience;oronphysicalconstraints.Itisusedinbothultimatelimitstateverificationandserviceabilitylimitstateverification4.4RepresentativeValuesofLoads…3(1)Determinedbythereturnperiodofaload2.Methodswhere,iscalled(mean)returnperiod.where,iscalledyearlyexceedanceprobability.4.4RepresentativeValuesofLoads…4(2)Determinedbythepercentileof2.Methods…where,istheprobabilityofnotbeingexceededduringthereferenceperiod,itisalsocalled“guaranteeprobability”.4.4RepresentativeValuesofLoads…5Example4.1Pleaserefertothetextbook“Structural

Reliability”byProfessorOu&Duan.TurntoPage15,lookattheexample1.3carefully!4.4RepresentativeValuesofLoads…64.4.3FrequentValueThefrequentvalueofaloadisthefrequentoccurringloadthatactsonthestructureduringthedesignreferenceperiod.1.DefinitionItistherepresentativevalueofvariableloadswhencheckingtheserviceabilitylimitstatebythefrequent(shortterm)loadeffectcombinationrule.2.Method4.4RepresentativeValuesofLoads…74.4.3FrequentValueMethod1:4.4RepresentativeValuesofLoads…84.4.3FrequentValueMethod2:4.4RepresentativeValuesofLoads…94.4.4Quasi-permanentValueThequasi-permanentvalueofaloadistheoftenoccurringloadthatactsonthestructureduringthedesignreferenceperiod.1.DefinitionItistherepresentativevalueofvariableloadswhencheckingtheserviceabilitylimitstatebythecombinationrulesofquasi-permanentvaluecombinationandfrequentvaluecombination.2.Method4.4RepresentativeValuesofLoads…104.4.5CombinationValue4.4RepresentativeValuesofLoads…114.4.5CombinationValueWhentwoormoreloadsactonthestructureduringthedesignreferenceperiod,themaximumvaluesoftheseloadscannotoccursimultaneously,thentherepresentativevaluesofloadscanbetakenasitscombinationvalues.1.DefinitionItischosensothattheprobabilitythattheloadeffectvaluescausedbythecombinationwillbeexceededisapproximatelythesameaswhenasingleloadisconsidered.2.Method4.5CombinationofLoadEffectsChapter4

ProbabilityModelsandStatisticalAnalysisofLoads4.5CombinationofLoadEffects…14.5.1BasicConceptsThetotalloadQisasumofindividualloadcomponentssuchasdeadload,liveload,windload,snowload,seismicactions,etc.Theyallvarywithtime.Whenonlyonekindofthetime-dependentloadsactsonthestructure,itsmaximumvalueduringthereferenceperiodisthenusedinstructuraldesign.Whentwoormoretime-dependentloadsactonthestructure,theirmaximumvaluesduringthereferenceperiodcannotoccursimultaneously.Therefore,theloadeffectcombinationproblemshouldbeconsidered.4.5CombinationofLoadEffects…2Itisgenerallyassumedthattheloadeffectislinearlyrelatedtotheload:where,iscalledloadeffectcoefficient.Therefore,theloadcombinationproblemisconsistentwiththeloadeffectcombinationproblem.Theessentialpointoftheloadcombinationproblemistofindtheprobabilitycharacteristicsofthemaximumvalueofthetotalloadeffects:4.5CombinationofLoadEffects…34.5.2Turkstra’sRuleforLoadEffectCombinationIfaloadtakeitsmaximumloadeffectduringthedesignreferenceperiod,thentheother(n-1)loadstaketheirtransientvalues.4.5CombinationofLoadEffects…4Example4.2Pleaserefertothetextbook“ReliabilityofStructures”byProfessorA.S.Nowak.TurntoPage170,lookattheexample6.3carefully!4.5CombinationofLoadEffects…54.5.3FBCRuleforLoadEffectCombinationForanarbitraryload,itsmaximumloadeffectduringthedesignreferenceperiodiscombinedwithotherloadeffects.Foreachload,thedesignreferenceperiodTisdividedintoequalintervals.allloadsarereorderedfromsmalltolargeaccordingtothevaluesof,andletthetakeintegervalue.4.5CombinationofLoadEffects…64.5.3FBCRuleforLoadEffectCombination4.5CombinationofLoadEffects…74.5.3FBCRuleforLoadEffectCombination4.5CombinationofLoadEffects…84.5.4JCSS’sRuleforLoadEffectCombinationForanarbitraryload,itsmaximumloadeffectduringthedesignreferenceperiodiscombinedwithotherloadeffects.Foreachload,thedesignreferenceperiodTisdividedintoequalintervals.allloadsarereorderedfromsmalltolargeaccordingtothevaluesof,andletthetakeintegervalue.Fortheloadwhosenumbersofintervalsislargerthan,thelocalmaximumvalueduringt

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論