2022年四川省遂寧市船山區(qū)第二中學(xué)數(shù)學(xué)九上期末預(yù)測試題含解析_第1頁
2022年四川省遂寧市船山區(qū)第二中學(xué)數(shù)學(xué)九上期末預(yù)測試題含解析_第2頁
2022年四川省遂寧市船山區(qū)第二中學(xué)數(shù)學(xué)九上期末預(yù)測試題含解析_第3頁
2022年四川省遂寧市船山區(qū)第二中學(xué)數(shù)學(xué)九上期末預(yù)測試題含解析_第4頁
2022年四川省遂寧市船山區(qū)第二中學(xué)數(shù)學(xué)九上期末預(yù)測試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題3分,共30分)1.某路口的交通信號燈每分鐘紅燈亮30秒,綠燈亮25秒,黃燈亮5秒,當(dāng)小明到達該路口時,遇到綠燈的概率是()A. B. C. D.2.如圖,公園中一正方形水池中有一噴泉,噴出的水流呈拋物線狀,測得噴出口高出水面0.8m,水流在離噴出口的水平距離1.25m處達到最高,密集的水滴在水面上形成了一個半徑為3m的圓,考慮到出水口過高影響美觀,水滴落水形成的圓半徑過大容易造成水滴外濺到池外,現(xiàn)決定通過降低出水口的高度,使落水形成的圓半徑為2.75m,則應(yīng)把出水口的高度調(diào)節(jié)為高出水面()A.0.55米 B.米 C.米 D.0.4米3.如圖,在中,D在AC邊上,,O是BD的中點,連接AO并延長交BC于E,則()A.1:2 B.1:3 C.1:4 D.2:34.我市參加教師資格考試的人數(shù)逐年增加,據(jù)有關(guān)部門統(tǒng)計,2017年約為10萬人次,2019年約為18.8萬人次,設(shè)考試人數(shù)年均增長率為x,則下列方程中正確的是A.10(1+2x)=18.8 B.=10C.=18.8 D.=18.85.已知二次函數(shù)y=ax2+bx+c+2的圖象如圖所示,頂點為(-1,1),下列結(jié)論:①abc<1;②b2-4ac=1;③a<2;④4a-2b+c>1.其中正確結(jié)論的個數(shù)是()A.1 B.2 C.3 D.46.拋物線的對稱軸是直線()A.x=-2 B.x=-1 C.x=2 D.x=17.如圖,要測量小河兩岸相對的兩點P,A的距離,可以在小河邊取PA的垂線PB上的一點C,測得PC=100米,∠PCA=35°,則小河寬PA等于()A.100sin35°米 B.100sin55°米 C.100tan35°米 D.100tan55°米8.拋物線的對稱軸為A. B. C. D.9.如圖是胡老師畫的一幅寫生畫,四位同學(xué)對這幅畫的作畫時間作了猜測.根據(jù)胡老師給出的方向坐標(biāo),猜測比較合理的是()A.小明:“早上8點” B.小亮:“中午12點”C.小剛:“下午5點” D.小紅:“什么時間都行”10.如圖,已知一組平行線a∥b∥c,被直線m、n所截,交點分別為A、B、C和D、E、F,且AB=1.5,BC=2,DE=1.8,則EF=()A.4.4 B.4 C.3.4 D.2.4二、填空題(每小題3分,共24分)11.如圖,在中,,,,是上一點,,過點的直線將分成兩部分,使其所分成的三角形與相似,若直線與另一邊的交點為點,則__________.12.如果拋物線y=﹣x2+(m﹣1)x+3經(jīng)過點(2,1),那么m的值為_____.13.建國70周年閱兵式中,三軍女兵方隊共352人,其中領(lǐng)隊2人,方隊中,每排的人數(shù)比排數(shù)多11,則女兵方隊共有____________排,每排有__________人.14.如圖,中,ACB=90°,AC=4,BC=3,則_______.15.已知小明身高,在某一時刻測得他站立在陽光下的影長為.若當(dāng)他把手臂豎直舉起時,測得影長為,則小明舉起的手臂超出頭頂______.16.如圖,點P是∠AOB平分線OC上一點,PD⊥OB,垂足為D,若PD=2,則點P到邊OA的距離是_____.17.若是方程的一個根.則的值是________.18.計算_________.三、解答題(共66分)19.(10分)如圖,在矩形ABCD中,AB=3,BC=4,點E是線段AC上的一個動點且=k(0<k<1),點F在線段BC上,且DEFH為矩形;過點E作MN⊥BC,分別交AD,BC于點M,N.(1)求證:△MED∽△NFE;(2)當(dāng)EF=FC時,求k的值.(3)當(dāng)矩形EFHD的面積最小時,求k的值,并求出矩形EFHD面積的最小值.20.(6分)已知如圖,拋物線y=ax2+bx+3與x軸交于點A(3,0),B(﹣1,0),與y軸交于點C,連接AC,點P是直線AC上方的拋物線上一動點(異于點A,C),過點P作PE⊥x軸,垂足為E,PE與AC相交于點D,連接AP.(1)求點C的坐標(biāo);(2)求拋物線的解析式;(3)①求直線AC的解析式;②是否存在點P,使得△PAD的面積等于△DAE的面積,若存在,求出點P的坐標(biāo),若不存在,請說明理由.21.(6分)己知函數(shù)(是常數(shù))(1)當(dāng)時,該函數(shù)圖像與直線有幾個公共點?請說明理由;(2)若函數(shù)圖像與軸只有一公共點,求的值.22.(8分)計算題:|﹣3|+tan30°﹣﹣(2017﹣π)0+()-1.23.(8分)如圖,某反比例函數(shù)圖象的一支經(jīng)過點A(2,3)和點B(點B在點A的右側(cè)),作BC⊥y軸,垂足為點C,連結(jié)AB,AC.(1)求該反比例函數(shù)的解析式;(2)若△ABC的面積為6,求直線AB的表達式.24.(8分)如圖,已知拋物線y=ax2+bx+c過點A(﹣3,0),B(﹣2,3),C(0,3),頂點為D.(1)求拋物線的解析式;(2)設(shè)點M(1,m),當(dāng)MB+MD的值最小時,求m的值;(3)若P是拋物線上位于直線AC上方的一個動點,求△APC的面積的最大值.25.(10分)在如圖所示的方格紙中,每個小方格都是邊長為1個單位長度的正方形,△ABC的頂點及點O都在格點上(每個小方格的頂點叫做格點).(1)以點O為位似中心,在網(wǎng)格區(qū)域內(nèi)畫出△A′B′C′,使△A′B′C′與△ABC位似(A′、B′、C′分別為A、B、C的對應(yīng)點),且位似比為2:1;(2)△A′B′C′的面積為個平方單位;(3)若網(wǎng)格中有一格點D′(異于點C′),且△A′B′D′的面積等于△A′B′C′的面積,請在圖中標(biāo)出所有符合條件的點D′.(如果這樣的點D′不止一個,請用D1′、D2′、…、Dn′標(biāo)出)26.(10分)如圖,在中,是邊上的一點,若,求證:.

參考答案一、選擇題(每小題3分,共30分)1、D【分析】隨機事件A的概率事件A可能出現(xiàn)的結(jié)果數(shù)÷所有可能出現(xiàn)的結(jié)果數(shù).【詳解】解:每分鐘紅燈亮30秒,綠燈亮25秒,黃燈亮5秒,當(dāng)小明到達該路口時,遇到綠燈的概率,故選D.【點睛】本題考查了概率,熟練掌握概率公式是解題的關(guān)鍵.2、B【分析】如圖,以O(shè)為原點,建立平面直角坐標(biāo)系,由題意得到對稱軸為x=1.25=,A(0,0.8),C(3,0),列方程組求得函數(shù)解析式,即可得到結(jié)論.【詳解】解:如圖,以O(shè)為原點,建立平面直角坐標(biāo)系,由題意得,對稱軸為x=1.25=,A(0,0.8),C(3,0),設(shè)解析式為y=ax2+bx+c,∴,解得:,所以解析式為:y=x2+x+,當(dāng)x=2.75時,y=,∴使落水形成的圓半徑為2.75m,則應(yīng)把出水口的高度調(diào)節(jié)為高出水面08﹣=,故選:B.【點睛】本題考查了二次函數(shù)的實際應(yīng)用,根據(jù)題意建立合適的坐標(biāo)系,找到點的坐標(biāo),用待定系數(shù)法解出函數(shù)解析式是解題的關(guān)鍵3、B【分析】過O作BC的平行線交AC與G,由中位線的知識可得出,根據(jù)已知和平行線分線段成比例得出,再由同高不同底的三角形中底與三角形面積的關(guān)系可求出的比.【詳解】解:如圖,過O作,交AC于G,∵O是BD的中點,∴G是DC的中點.又,設(shè),又,,故選B.【點睛】考查平行線分線段成比例及三角形的中位線的知識,難度較大,注意熟練運用中位線定理和三角形面積公式.4、C【分析】根據(jù)增長率的計算公式:增長前的數(shù)量×(1+增長率)增長次數(shù)=增長后數(shù)量,從而得出答案.【詳解】根據(jù)題意可得方程為:10(1+x)2=18.8,故選:C.【點睛】本題主要考查的是一元二次方程的應(yīng)用,屬于基礎(chǔ)題型.解決這個問題的關(guān)鍵就是明確基本的計算公式.5、A【分析】根據(jù)拋物線的圖像和表達式分析其系數(shù)的值,通過特殊點的坐標(biāo)判斷結(jié)論是否正確.【詳解】∵函數(shù)圖象開口向上,∴,又∵頂點為(,1),∴,∴,由拋物線與軸的交點坐標(biāo)可知:,∴c>1,∴abc>1,故①錯誤;∵拋物線頂點在軸上,∴,即,又,∴,故②錯誤;∵頂點為(,1),∴,∵,∴,∵,∴,則,故③錯誤;由拋物線的對稱性可知與時的函數(shù)值相等,∴,∴,故④正確.綜上,只有④正確,正確個數(shù)為1個.故選:A.【點睛】本題考查了二次函數(shù)圖象與系數(shù)的關(guān)系,根據(jù)二次函數(shù)圖象以及頂點坐標(biāo)找出之間的關(guān)系是解題的關(guān)鍵.6、B【解析】令解得x=-1,故選B.7、C【分析】根據(jù)正切函數(shù)可求小河寬PA的長度.【詳解】∵PA⊥PB,PC=100米,∠PCA=35°,∴小河寬PA=PCtan∠PCA=100tan35°米.故選C.【點睛】考查了解直角三角形的應(yīng)用,解直角三角形的一般過程是:①將實際問題抽象為數(shù)學(xué)問題(畫出平面圖形,構(gòu)造出直角三角形轉(zhuǎn)化為解直角三角形問題).②根據(jù)題目已知特點選用適當(dāng)銳角三角函數(shù)或邊角關(guān)系去解直角三角形,得到數(shù)學(xué)問題的答案,再轉(zhuǎn)化得到實際問題的答案.8、B【分析】根據(jù)頂點式的坐標(biāo)特點,直接寫出對稱軸即可.【詳解】解∵:拋物線y=-x2+2是頂點式,

∴對稱軸是直線x=0,即為y軸.

故選:B.【點睛】此題考查了二次函數(shù)的性質(zhì),二次函數(shù)y=a(x-h)2+k的頂點坐標(biāo)為(h,k),對稱軸為直線x=h.9、C【解析】可根據(jù)平行投影的特點分析求解,或根據(jù)常識直接確定答案.解:根據(jù)題意:影子在物體的東方,根據(jù)北半球,從早晨到傍晚影子的指向是:西-西北-北-東北-東,可得應(yīng)該是下午.故選C.本題考查了平行投影的特點和規(guī)律.在不同時刻,同一物體的影子的方向和大小可能不同,不同時刻物體在太陽光下的影子的大小在變,方向也在改變,就北半球而言,從早晨到傍晚影子的指向是:西-西北-北-東北-東,影長由長變短,再變長.10、D【分析】直接利用平行線分線段成比例定理對各選項進行判斷即可.【詳解】解:∵a∥b∥c,

∴,∵AB=1.5,BC=2,DE=1.8,∴,∴EF=2.4

故選:D.【點睛】本題考查了平行線分線段成比例,掌握三條平行線截兩條直線,所得的對應(yīng)線段成比例是關(guān)鍵.二、填空題(每小題3分,共24分)11、1,,【分析】根據(jù)P的不同位置,分三種情況討論,即可解答.【詳解】解:如圖:當(dāng)DP∥AB時∴△DCP∽△BCA∴即,解得DP=1如圖:當(dāng)P在AB上,即DP∥AC∴△DCP∽△BCA∴即,解得DP=如圖,當(dāng)∠CPD=∠B,且∠C=∠C時,∴△DCP∽△ACB∴即,解得DP=故答案為1,,.【點睛】本題考查了相似三角形的判定和性質(zhì),掌握分類討論思想并全部找到不同位置的P點是解答本題的關(guān)鍵.12、2【分析】把點(2,1)代入y=﹣x2+(m﹣1)x+3,即可求出m的值.【詳解】∵拋物線y=﹣x2+(m﹣1)x+3經(jīng)過點(2,1),∴1=-4+2(m-1)+3,解得m=2,故答案為2.【點睛】本題考查了二次函數(shù)圖象上點的坐標(biāo)特征,解題的關(guān)鍵是找出二次函數(shù)圖象上的點的坐標(biāo)滿足的關(guān)系式.13、14;1【分析】先設(shè)三軍女兵方隊共有排,則每排有()人,根據(jù)三軍女兵方隊共352人可列方程求解即可.【詳解】設(shè)三軍女兵方隊共有排,則每排有()人,根據(jù)題意得:

,

整理,得.

解得:(不合題意,舍去),

則(人).

故答案為:14,1.【點睛】本題考查了一元二次方程的應(yīng)用,解題關(guān)鍵是要讀懂題目的意思,根據(jù)題目給出的條件,找出合適的等量關(guān)系,列出方程,再求解.14、【分析】先求得∠A=∠BCD,然后根據(jù)銳角三角函數(shù)的概念求解即可.【詳解】在Rt△ABC與Rt△BCD中,∠A+∠B=90°,∠BCD+∠B=90°.∴∠A=∠BCD.∴tan∠BCD=tan∠A=.故答案為.【點睛】本題考查了解直角三角形,三角函數(shù)值只與角的大小有關(guān),因而求一個角的函數(shù)值,可以轉(zhuǎn)化為求與它相等的其它角的三角函數(shù)值.15、0.54【分析】在同一時刻,物體的高度和影長成比例,根據(jù)此規(guī)律列方程求解.【詳解】解:設(shè)小明舉起的手臂超出頭頂xm,根據(jù)題意得,,解得x=0.54即舉起的手臂超出頭頂0.54m.故答案為:0.54.【點睛】本題考查同一時刻物體的高度和影長成比例的投影規(guī)律,根據(jù)規(guī)律列比例式求解是解答此題的關(guān)鍵.,16、1【分析】作PE⊥OA,再根據(jù)角平分線的性質(zhì)得出PE=PD即可得出答案.【詳解】過P作PE⊥OA于點E,∵點P是∠AOB平分線OC上一點,PD⊥OB,∴PE=PD,∵PD=1,∴PE=1,∴點P到邊OA的距離是1.故答案為1.【點睛】本題考查角平分線的性質(zhì),關(guān)鍵在于牢記角平分線的性質(zhì)并靈活運用.17、【解析】根據(jù)一元二次方程的解的定義,將x=2代入已知方程,列出關(guān)于q的新方程,通過解該方程即可求得q的值.【詳解】∵x=2是方程x2-3x+q=0的一個根,

∴x=2滿足該方程,

∴22-3×2+q=0,

解得,q=2.

故答案為2.【點睛】本題考查了方程的解的定義.一元二次方程的根就是一元二次方程的解,就是能夠使方程左右兩邊相等的未知數(shù)的值.即用這個數(shù)代替未知數(shù)所得式子仍然成立.18、【分析】先分別計算特殊角的三角函數(shù)值,負整數(shù)指數(shù)冪,再合并即可得到答案.【詳解】解:故答案為:【點睛】本題考查的是特殊角三角函數(shù)的計算,負整數(shù)指數(shù)冪的運算,掌握以上知識點是解題的關(guān)鍵.三、解答題(共66分)19、(1)見解析;(2);(3)矩形EFHD的面積最小值為,k=.【分析】(1)由矩形的性質(zhì)得出∠B=90°,AD=BC=4,DC=AB=3,AD∥BC,證出∠EMD=∠FNE=90°,∠NEF=∠MDE,即可得出△MED∽△NFE;(2)設(shè)AM=x,則MD=NC=4﹣x,由三角函數(shù)得出ME=x,得出NE=3﹣x,由相似三角形的性質(zhì)得出=,求出NF=x,得出FC=4﹣x﹣x=4﹣x,由勾股定理得出EF==,當(dāng)EF=FC時,得出方程4﹣x=,解得x=4(舍去),或x=,進而得出答案;(3)由相似三角形的性質(zhì)得出==,得出DE=EF,求出矩形EFHD的面積=DE×EF=EF2==,由二次函數(shù)的性質(zhì)進而得出答案.【詳解】(1)證明:∵四邊形ABCD是矩形,∴∠B=90°,AD=BC=4,DC=AB=3,AD∥BC,∵MN⊥BC,∴MN⊥AD,∴∠EMD=∠FNE=90°,∵四邊形DEFH是矩形,∴∠MED+∠NEF=90°,∴∠NEF=∠MDE,∴△MED∽△NFE;(2)解:設(shè)AM=x,則MD=NC=4﹣x,∵tan∠DAC=tan∠MAE===,∴ME=x,∴NE=3﹣x,∵△MED∽△NFE,∴=,即=,解得:NF=x,∴FC=4﹣x﹣x=4﹣x,EF==,當(dāng)EF=FC時,4﹣x=,解得:x=4或x=,由題意可知x=4不合題意,當(dāng)x=時,AE=,∵AC===5,∴k==;(3)解:由(1)可知:△MED∽△NFE,∴,∴DE=EF,∴矩形EFHD的面積=DE×EF=EF2==∴當(dāng)x﹣=0時,即x=時,矩形EFHD的面積最小,最小值為:,∵cos∠MAE===,∴AE=AM=×=,此時k==.【點睛】本題考查了矩形與相似三角形,以及二次函數(shù)的應(yīng)用,解題的關(guān)鍵是利用相似三角形的性質(zhì)建立二次函數(shù)模型是解題的關(guān)鍵.20、(1)(0,3);(2)y=﹣x2+2x+3;(3)①;②當(dāng)點P的坐標(biāo)為(1,4)時,△PAD的面積等于△DAE的面積.【分析】(1)將代入二次函數(shù)解析式即可得點C的坐標(biāo);(2)把A(3,0),B(﹣1,0)代入y=ax2+bx+3即可得出拋物線的解析式;(3)①設(shè)直線直線AC的解析式為,把A(3,0),C代入即可得直線AC的解析式;②存在點P,使得△PAD的面積等于△DAE的面積;設(shè)點P(x,﹣x2+2x+3)則點D(x,﹣x+3),可得PD=﹣x2+2x+3﹣(﹣x+3)=﹣x2+3x,DE=﹣x+3,根據(jù)S△PAD=S△DAE時,即可得PD=DE,即可得出結(jié)論.【詳解】解:(1)由y=ax2+bx+3,令∴點C的坐標(biāo)為(0,3);(2)把A(3,0),B(﹣1,0)代入y=ax2+bx+3得,解得:,∴拋物線的解析式為:y=﹣x2+2x+3;(3)①設(shè)直線直線AC的解析式為,把A(3,0),C代入得,解得,∴直線AC的解析式為;②存在點P,使得△PAD的面積等于△DAE的面積,理由如下:設(shè)點P(x,﹣x2+2x+3)則點D(x,﹣x+3),∴PD=﹣x2+2x+3﹣(﹣x+3)=﹣x2+3x,DE=﹣x+3,當(dāng)S△PAD=S△DAE時,有,得PD=DE,∴﹣x2+3x=﹣x+3解得x1=1,x2=3(舍去),∴y=﹣x2+2x+3=﹣12+2+3=4,∴當(dāng)點P的坐標(biāo)為(1,4)時,△PAD的面積等于△DAE的面積.【點睛】本題考查了用待定系數(shù)法求解析式,二次函數(shù)的綜合,掌握知識點是解題關(guān)鍵.21、(1)函數(shù)圖像與直線有兩個不同的公共點;(2)或.【分析】(1)首先聯(lián)立二次函數(shù)和一次函數(shù)得出一元二次方程,然后由根的判別式判定即可;(2)分情況討論:當(dāng)和時,與軸有一個公共點求解即可.【詳解】(1)當(dāng)時,∴∴∵∴方程有兩個不相等的實數(shù)根,函數(shù)圖像與直線有兩個不同的公共點(2)①當(dāng)時,函數(shù)與軸有一個公共點②當(dāng)時,函數(shù)是二次函數(shù)由題可得,綜上可知:或.【點睛】此題主要考查二次函數(shù)與一次函數(shù)的綜合運用,熟練掌握,即可解題.22、4

【分析】根據(jù)零指數(shù)冪、絕對值、負整數(shù)指數(shù)冪及三角函數(shù)值解答即可.【詳解】解:原式=3+﹣2﹣1+3=4【點睛】本題考查了零指數(shù)冪、絕對值、負整數(shù)指數(shù)冪及三角函數(shù)值,熟練掌握運算法則是解本題的關(guān)鍵.23、(1)y;(2)yx+1.【解析】(1)把A的坐標(biāo)代入反比例函數(shù)的解析式即可求得;(2)作AD⊥BC于D,則D(2,b),即可利用a表示出AD的長,然后利用三角形的面積公式即可得到一個關(guān)于b的方程,求得b的值,進而求得a的值,根據(jù)待定系數(shù)法,可得答案.【詳解】(1)由題意得:k=xy=2×3=6,∴反比例函數(shù)的解析式為y;(2)設(shè)B點坐標(biāo)為(a,b),如圖,作AD⊥BC于D,則D(2,b),∵反比例函數(shù)y的圖象經(jīng)過點B(a,b),∴b,∴AD=3,∴S△ABCBC?ADa(3)=6,解得a=6,∴b

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論