2023年江蘇省連云港市普通高校對口單招高等數(shù)學(xué)一自考模擬考試(含答案)_第1頁
2023年江蘇省連云港市普通高校對口單招高等數(shù)學(xué)一自考模擬考試(含答案)_第2頁
2023年江蘇省連云港市普通高校對口單招高等數(shù)學(xué)一自考模擬考試(含答案)_第3頁
2023年江蘇省連云港市普通高校對口單招高等數(shù)學(xué)一自考模擬考試(含答案)_第4頁
2023年江蘇省連云港市普通高校對口單招高等數(shù)學(xué)一自考模擬考試(含答案)_第5頁
已閱讀5頁,還剩22頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2023年江蘇省連云港市普通高校對口單招高等數(shù)學(xué)一自考模擬考試(含答案)學(xué)校:________班級:________姓名:________考號:________

一、單選題(20題)1.A.eB.e-1

C.e2

D.e-2

2.當(dāng)x→0時(shí),sinx是sinx的等價(jià)無窮小量,則k=()A.0B.1C.2D.3

3.微分方程y"-y'=0的通解為()。A.

B.

C.

D.

4.A.A.2

B.1

C.1/2e

D.

5.設(shè)函數(shù)在x=0處連續(xù),則等于()。A.2B.1/2C.1D.-2

6.下列命題不正確的是()。

A.兩個(gè)無窮大量之和仍為無窮大量

B.上萬個(gè)無窮小量之和仍為無窮小量

C.兩個(gè)無窮大量之積仍為無窮大量

D.兩個(gè)有界變量之和仍為有界變量

7.設(shè)Y=x2-2x+a,貝0點(diǎn)x=1()。A.為y的極大值點(diǎn)B.為y的極小值點(diǎn)C.不為y的極值點(diǎn)D.是否為y的極值點(diǎn)與a有關(guān)

8.設(shè)函數(shù)f(x)在區(qū)間[0,1]上可導(dǎo),且f(x)>0,則()

A.f(1)>f(0)B.f(1)<f(0)C.f(1)=f(0)D.f(1)與f(0)的值不能比較

9.A.絕對收斂B.條件收斂C.發(fā)散D.無法確定斂散性

10.在空間中,方程y=x2表示()A.xOy平面的曲線B.母線平行于Oy軸的拋物柱面C.母線平行于Oz軸的拋物柱面D.拋物面

11.

12.

13.設(shè)z=x2y,則等于()。A.2yx2y-1

B.x2ylnx

C.2x2y-1lnx

D.2x2ylnx

14.f(x)在x=0有二階連續(xù)導(dǎo)數(shù),則f(x)在x=0處()。A.取極小值B.取極大值C.不取極值D.以上都不對

15.

16.在空間直角坐標(biāo)系中方程y2=x表示的是

A.拋物線B.柱面C.橢球面D.平面

17.

18.

19.設(shè)函數(shù)f(x)滿足f'(sin2x=cos2x,且f(0)=0,則f(x)=()A.

B.

C.

D.

20.方程x2+y2-2z=0表示的二次曲面是.

A.柱面B.球面C.旋轉(zhuǎn)拋物面D.橢球面二、填空題(20題)21.交換二重積分次序∫01dx∫x2xf(x,y)dy=________。

22.

20.

23.

24.25.

26.

27.

28.

29.30.31.

32.

33.

34.設(shè)z=sin(x2+y2),則dz=________。

35.設(shè)y=cosx,則y'=______

36.

37.38.空間直角坐標(biāo)系中方程x2+y2=9表示的曲線是________。39.

40.

三、計(jì)算題(20題)41.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則42.求微分方程的通解.43.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.

44.

45.求曲線在點(diǎn)(1,3)處的切線方程.46.

47.

48.49.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.50.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為

S(x).

(1)寫出S(x)的表達(dá)式;

(2)求S(x)的最大值.

51.證明:

52.

53.求微分方程y"-4y'+4y=e-2x的通解.

54.研究級數(shù)的收斂性(即何時(shí)絕對收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.55.56.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).

57.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

58.將f(x)=e-2X展開為x的冪級數(shù).59.60.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.四、解答題(10題)61.

62.確定函數(shù)f(x,y)=3axy-x3-y3(a>0)的極值點(diǎn).

63.設(shè)

64.65.設(shè)函數(shù)y=xlnx,求y''.66.

67.

68.

69.

70.計(jì)算其中D是由y=x,x=0,y=1圍成的平面區(qū)域.五、高等數(shù)學(xué)(0題)71.曲線y=x3一12x+1在區(qū)間(0,2)內(nèi)()。

A.凸且單增B.凹且單減C.凸且單增D.凹且單減六、解答題(0題)72.設(shè)y=xsinx,求y'。

參考答案

1.C

2.B由等價(jià)無窮小量的概念,可知=1,從而k=1,故選B。也可以利用等價(jià)無窮小量的另一種表述形式,由于當(dāng)x→0時(shí),有sinx~x,由題設(shè)知當(dāng)x→0時(shí),kx~sinx,從而kx~x,可知k=1。

3.B本題考查的知識點(diǎn)為二階常系數(shù)齊次微分方程的求解。微分方程為y"-y'=0特征方程為r2-r=0特征根為r1=1,r2=0方程的通解為y=C1ex+c2可知應(yīng)選B。

4.B

5.C本題考查的知識點(diǎn)為函數(shù)連續(xù)性的概念。由于f(x)在點(diǎn)x=0連續(xù),因此,故a=1,應(yīng)選C。

6.A∵f(x)→∞;g(x)→∞∴f(x)+g(x)是不定型,不一定是無窮大。

7.B本題考查的知識點(diǎn)為一元函數(shù)的極值。求解的一般步驟為:先求出函數(shù)的一階導(dǎo)數(shù),令偏導(dǎo)數(shù)等于零,確定函數(shù)的駐點(diǎn).再依極值的充分條件來判定所求駐點(diǎn)是否為極值點(diǎn)。由于y=x2-2x+a,可由y'=2x-2=0,解得y有唯一駐點(diǎn)x=1.又由于y"=2,可得知y"|x=1=2>0。由極值的充分條件可知x=1為y的極小值點(diǎn),故應(yīng)選B。如果利用配方法,可得y=(x-1)2+a-1≥a-1,且y|x=1=a-1,由極值的定義可知x=1為y的極小值點(diǎn),因此選B。

8.A由f"(x)>0說明f(x)在[0,1]上是增函數(shù),因?yàn)?>0,所以f(1)>f(0)。故選A。

9.A

10.C方程F(x,y)=0表示母線平行于Oz軸的柱面,稱之為柱面方程,故選C。

11.A

12.A

13.A本題考查的知識點(diǎn)為偏導(dǎo)數(shù)的計(jì)算。對于z=x2y,求的時(shí)候,要將z認(rèn)定為x的冪函數(shù),從而可知應(yīng)選A。

14.B;又∵分母x→0∴x=0是駐點(diǎn);;即f""(0)=一1<0,∴f(x)在x=0處取極大值

15.B

16.B解析:空間中曲線方程應(yīng)為方程組,故A不正確;三元一次方程表示空間平面,故D不正確;空間中,缺少一維坐標(biāo)的方程均表示柱面,可知應(yīng)選B。

17.A

18.C

19.D

20.C本題考查了二次曲面的知識點(diǎn)。x2+y2-2z=0可化為x2/2+y2/2=z,故表示的是旋轉(zhuǎn)拋物面。21.因?yàn)椤?1dx∫x2xf(x,y)dy,所以其區(qū)域如圖所示,所以先對x的積分為。

22.

23.-sinx

24.

25.本題考查的知識點(diǎn)為連續(xù)性與極限的關(guān)系.

由于為初等函數(shù),定義域?yàn)?-∞,0),(0,+∞),點(diǎn)x=2為其定義區(qū)間(0,+∞)內(nèi)的點(diǎn),從而知

26.(-33)

27.3

28.0<k≤10<k≤1解析:29.e;本題考查的知識點(diǎn)為極限的運(yùn)算.

注意:可以變形,化為形式的極限.但所給極限通常可以先變形:

30.

31.

本題考查的知識點(diǎn)為二重積分的計(jì)算.

32.

本題考查的知識點(diǎn)為二重積分的計(jì)算.

33.2yex+x

34.2cos(x2+y2)(xdx+ydy)

35.-sinx

36.F'(x)37.解析:38.以O(shè)z為軸的圓柱面方程。F(x,y)=0表示母線平行于Oz軸的柱面,稱之為柱面方程,方程x2+y2=32=0表示母線平行Oz軸的圓柱面方程。39.(-∞,+∞).

本題考查的知識點(diǎn)為求冪級數(shù)的收斂區(qū)間.

若ρ=0,則收斂半徑R=+∞,收斂區(qū)間為(-∞,+∞).

若ρ=+∞,則收斂半徑R=0,級數(shù)僅在點(diǎn)x=0收斂.

40.41.由等價(jià)無窮小量的定義可知

42.43.由二重積分物理意義知

44.

45.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

46.由一階線性微分方程通解公式有

47.

48.

49.

50.

51.

52.

53.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,

54.

55.

56.

列表:

說明

57.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%

58.

59.60.函數(shù)的定義域?yàn)?/p>

注意

61.

62.

63.

64.【解析】本題考查的知識點(diǎn)為求二元隱函數(shù)的偏導(dǎo)數(shù)與全微分.

解法1

解法2利用微分運(yùn)算

【解題指導(dǎo)】

求二元隱函數(shù)的偏導(dǎo)數(shù)有兩種方法:

65.

66.

67.

68.

69.

70.本題考查的知識點(diǎn)為二重積分運(yùn)算和選擇二次積分次序.

由于不能用初等函數(shù)形式表示,因此不能先對y積分,只能選取先對x積分后對y積分的次序.

通常都不能由初等函數(shù)形式表示

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論