版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
PAGEPAGE1中英文對(duì)照外文翻譯文獻(xiàn)(文檔含英文原文和中文翻譯)譯文:基于局部二值模式多分辨率的灰度和旋轉(zhuǎn)不變性的紋理分類摘要:本文描述了理論上非常簡(jiǎn)單但非常有效的,基于局部二值模式的、樣圖的非參數(shù)識(shí)別和原型分類的,多分辨率的灰度和旋轉(zhuǎn)不變性的紋理分類方法。此方法是基于結(jié)合某種均衡局部二值模式,是局部圖像紋理的基本特性,并且已經(jīng)證明生成的直方圖是非常有效的紋理特征。我們獲得一個(gè)一般灰度和旋轉(zhuǎn)不變的算子,可表達(dá)檢測(cè)有角空間和空間結(jié)構(gòu)的任意量子化的均衡模式,并提出了結(jié)合多種算子的多分辨率分析方法。根據(jù)定義,該算子在圖像灰度發(fā)生單一變化時(shí)具有不變性,所以所提出的方法在灰度發(fā)生變化時(shí)是非常強(qiáng)健的。另一個(gè)優(yōu)點(diǎn)是計(jì)算簡(jiǎn)單,算子在小鄰域內(nèi)或同一查找表內(nèi)只要幾個(gè)操作就可實(shí)現(xiàn)。在旋轉(zhuǎn)不變性的實(shí)際問(wèn)題中得到了良好的實(shí)驗(yàn)結(jié)果,與來(lái)自其他的旋轉(zhuǎn)角度的樣品一起以一個(gè)特別的旋轉(zhuǎn)角度試驗(yàn)而且測(cè)試得到分類,證明了基于簡(jiǎn)單旋轉(zhuǎn)的發(fā)生統(tǒng)計(jì)學(xué)的不變性二值模式的分辨是可以達(dá)成。這些算子表示局部圖像紋理的空間結(jié)構(gòu)的又一特色是,由結(jié)合所表示的局部圖像紋理的差別的旋轉(zhuǎn)不變量不一致方法,其性能可得到進(jìn)一步的改良。這外文翻譯:基于局部二值模式多分辨率的灰度和旋轉(zhuǎn)不變性的紋理分類(節(jié)選)外文翻譯:基于局部二值模式多分辨率的灰度和旋轉(zhuǎn)不變性的紋理分類(節(jié)選)PAGEPAGE7些直角的措施共同證明了這是旋轉(zhuǎn)不變性紋理分析的非常有力的工具。關(guān)鍵詞:非參數(shù)的,紋理分析,Outex,Brodatz,分類,直方圖,對(duì)比度灰度和旋轉(zhuǎn)不變性的局部二值模式我們通過(guò)定義單色紋理圖像的一個(gè)局部鄰域的紋理T,如P(P>1)個(gè)象素點(diǎn)的灰度級(jí)聯(lián)合分布,來(lái)描述灰度和旋轉(zhuǎn)不變性算子:g )P1Tt(gg )P1c 0
(1)其中,gc為局部鄰域中心像素點(diǎn)的灰度值,gp(p=0,1…P-1)R(R>0)鄰域內(nèi)對(duì)稱的空間象素點(diǎn)集的灰度值。圖1c g的坐標(biāo)是(0,0g的坐標(biāo)為(Rsin(2p/P),Rcos(p/P))1舉例說(shuō)明了圓形對(duì)稱鄰域集內(nèi)各種不同的(P,。不完全落在中心點(diǎn)鄰域內(nèi)的像素點(diǎn)的灰c 灰度不變性的達(dá)成作為灰度不變性的第一步,在不丟失任何圖像信息的前提下,我們從圓形對(duì)稱鄰域集gp(p=0,……P-1)中減去中心點(diǎn)(gc)的灰度值,即令:Tt(g,g g,ggc 0 c 1 c
g) (2),,g P1然后,我們假設(shè)差分gP
ggc
,這樣我們就可以把式(2)式分解為:Tt(g)t(g g,ggc 0 c 1 c
g) (3),,g P1實(shí)際上,嚴(yán)格的獨(dú)立性是無(wú)法達(dá)成的,因此,被分解的因式只是聯(lián)合分布的一個(gè)近似值。然而,當(dāng)我們?cè)谛D(zhuǎn)中可以保持灰度不變性的話,我們?cè)敢獬袚?dān)丟失一些圖像小信息的可能。也就是說(shuō),因式t(gc
)在(3)中描述了圖像的全局亮度,但并不為紋理分析提供有用信息。因此,原始的聯(lián)合灰度級(jí)因式(1)的許多紋理特征信息可由聯(lián)合差分因式表達(dá)[1]:
,g P1Tt(g g,,g P10 c 1 c
g) (4)c這是一個(gè)有高度識(shí)別能力的紋理算子,可以算出P空間中各種模式下每個(gè)像素點(diǎn)鄰域的直方圖。對(duì)于固定的區(qū)域,在各個(gè)方向的差別為零。在一個(gè)慢慢傾斜的邊緣,該算子可算出沿傾斜方向差分最大的點(diǎn)和差分為零的點(diǎn),對(duì)于斑點(diǎn)而言,各個(gè)方向的差分都是很大的。有正負(fù)之分的差分gP
gc化具有不變性。我們所得到的關(guān)于灰度計(jì)數(shù)不變性只考慮差分符號(hào)而非它們的精確值:Tt(s(g g),s(gg0 c 1 c
s(g g)) (5)p1 c其中,
1,x0s(x)0,x0
(6)通過(guò)為每一個(gè)s(gP
g2p,我們把式(5)轉(zhuǎn)換為一個(gè)獨(dú)c特的LBPP,R
碼來(lái)刻畫局部圖像紋理的空間結(jié)構(gòu)的特性:p1LBPP,R
p0
s(gp
g)2p (7)cLocalBinaryPatterns這個(gè)名字反映了LBP算子的泛函性,即第一個(gè)局部鄰域點(diǎn)的灰度值是中心像素點(diǎn)進(jìn)入二值模式的開(kāi)始。LBPP,R
算子是通過(guò)對(duì)灰度的任何單調(diào)變化定義不變量,也就是,只要保持圖像灰度值的順序不變,LBPP,R
算子所產(chǎn)生的LBP碼就不變。P=8,R=1LBP8,1
這與我們?cè)谖墨I(xiàn)[2]中提到的LBP是類似的。LBP8,1
和LBP之間有兩個(gè)不同點(diǎn):1)鄰域集內(nèi)的像素點(diǎn)被編入索引以形成一個(gè)循環(huán)鏈,2)對(duì)角線上像素點(diǎn)的灰度值由插值法確定。兩者的修改都必需獲得圓形對(duì)稱鄰域集,這考慮到源自LBPP,R
的旋轉(zhuǎn)不變式之一。旋轉(zhuǎn)不變性的達(dá)成由鄰域集中P個(gè)像素點(diǎn)對(duì)應(yīng)2P個(gè)不同的二值模式,LBPP,R
算子會(huì)生成2P個(gè)不同的輸出值。當(dāng)圖像被旋轉(zhuǎn)時(shí),g 的灰度值會(huì)對(duì)應(yīng)地繞著g的四周沿著圓周的邊界移動(dòng)。g始終P 0 0被指定為元素(0,R)的灰度值,而恰恰gc
旋轉(zhuǎn)一個(gè)特定的二值模式后自然生成一個(gè)不同的LBPP,R
值。這不適用于只由0s(或1s)組成的旋轉(zhuǎn)任何角度始終保持不變的模式。為了要消除旋轉(zhuǎn)的影響,也就是,要分配一個(gè)獨(dú)特的標(biāo)識(shí)符給每個(gè)旋轉(zhuǎn)不變性的局部二值模式,我們定義:LBPriP,R
min{ROR(LBPP,R
,i)i0,1,
(8),P其中ROR(x,i)P-位元,P只簡(jiǎn)單對(duì)應(yīng)于被多次順時(shí)針?lè)较蛐D(zhuǎn)的鄰域集因而最有效位元的一個(gè)最大碼從g 啟動(dòng),P1為0。LBPriP,R
量化了對(duì)特定的微特征的個(gè)別旋轉(zhuǎn)不變性模式的發(fā)生統(tǒng)計(jì)學(xué);因此該模式可作2舉例說(shuō)明了當(dāng)P=8時(shí)的368,1#0檢測(cè)到明亮的斑點(diǎn),#8有暗點(diǎn)和平坦的區(qū)域,#4有邊緣。如果我們?cè)O(shè)定R=1LBPri[3]中指定了的8,1LBPROT。圖2基于均衡模式改進(jìn)的旋轉(zhuǎn)不變性和有角空間的更佳量化然而,我們的實(shí)際經(jīng)驗(yàn)已經(jīng)顯示LBPROT同樣不能提供非常好的識(shí)別,這點(diǎn)我們也總結(jié)在[3]。這有兩個(gè)原因:1)LBPROT36常大,2)45°間隔的粗糙量化。我們已經(jīng)觀測(cè)得知,特定的LBP可描述絕大多數(shù)的基本紋理特征,有時(shí)可描述超過(guò)90%3×33節(jié)中加以2(0)U值“模式“模式”下的空間變換碼的跳躍)000000002和111111112U02U220/1的跳躍。類似的,其它27種模式的U值至少為4。我們指定U值不大于2的為“均衡”模式,并提出了替代LBPriP,R
的基于灰度和旋轉(zhuǎn)不變紋理的算子如下: P1s(g g)當(dāng)U(LBP
)2LBPriu2
P0 p c其它
P,R
(9)P,R
P1其中U(LBPP,R
)s(g
g)s(gc
g)|P1|s(gc p1
g)s(gc
g)| (10)criu2U2P+1P(9)指定了一個(gè)獨(dú)特的標(biāo)識(shí)給這些像素點(diǎn)對(duì)應(yīng)模式(0P)12通過(guò)圖案把“均衡”模式表示出來(lái)了。在實(shí)踐中,從LBPP,R
LBPriu2P+2個(gè)不同的輸出值,是基于2p個(gè)元P,R素的查找表的最佳實(shí)現(xiàn)。紋理分析中最終使用的紋理特征是算子作用在紋理樣本之上所得值(即模式標(biāo)識(shí))的累計(jì)直方圖。相對(duì)于全獨(dú)立模式的直方圖,“均衡”模式的直方圖之所以能提供更好的識(shí)別力,歸結(jié)為它們的統(tǒng)計(jì)特性的差別。全模式累計(jì)直方圖中的“非均衡”模式的相關(guān)比例很小,因而它們的概率得不到可靠的估計(jì)。對(duì)樣本和模型直方圖的相異點(diǎn)分析中的有噪估計(jì)會(huì)使效果變差。LBPri)8個(gè)像素點(diǎn)所提供的8,1有角空間45°角粗量化的制約。因?yàn)橛薪强臻g的量化被定義為(360°/P),所以要使用一個(gè)更大的P和RR(9對(duì)于R=2P個(gè)元素的查找表的有效執(zhí)行,要求為P設(shè)定一P值最大為2416MB的查詢表。局部圖像紋理對(duì)比度的旋轉(zhuǎn)不變量方差的量度LBPriu2算子是一個(gè)灰度不變性方法,也就是,它的輸出值不受任何灰度轉(zhuǎn)化的影響。P,R它是空間模式的優(yōu)良方法,但根據(jù)定義,丟失了對(duì)比度。如果灰度不變性不是必需的,而我們又想要合并局部圖像紋理的對(duì)比度,則可用旋轉(zhuǎn)不變量來(lái)衡量局部方差:VARP,R
1P1(gP p0
)2,
1P
P1gpp0
(11)VAR
P,R
LBPriu2和P,R
P,R
是互相補(bǔ)充的,它們的聯(lián)合LBPriu2/VARP,R
P,R
的數(shù)學(xué)期望是局部圖像紋理旋轉(zhuǎn)不變量強(qiáng)有力的衡量。鑒于此,即使我們?cè)诒狙芯恐邢拗莆覀冏约河玫骄哂邢嗤?P,R)值的LBPriu2和VARP,R
P,R
算子,也不會(huì)影響我們使用作用于不同鄰域的算子的聯(lián)合分布。非參數(shù)的分類法則在分類階段,我們求出樣本和模型直方圖的相異值作為擬合度測(cè)試,這個(gè)值由非參數(shù)的統(tǒng)計(jì)檢驗(yàn)來(lái)衡量。通過(guò)非參數(shù)檢驗(yàn),關(guān)于紋理分類的假設(shè),我們可以避免任何可能的錯(cuò)誤。有許多眾所周知的擬合度統(tǒng)計(jì)量,諸如2統(tǒng)計(jì)量和G(對(duì)數(shù)似然比)統(tǒng)計(jì)量[4]。本研究中,測(cè)試樣本S被指派給M模型類,它的極大對(duì)數(shù)似然統(tǒng)計(jì)量為:L(S,M)
SlogM (12)b b其中,B為bin的數(shù)量,S和M 分別對(duì)應(yīng)樣本和模型的直方圖維值(bin)為b的概b b率。方程式(12)是G(對(duì)數(shù)似然比)統(tǒng)計(jì)量的直接簡(jiǎn)化:G(S,M)2BSlogSb
2B[SlogS Slog
] (13)b Mb
b b bb1其中,表達(dá)式右邊的第一項(xiàng)可以忽略地看作是給定的常數(shù)S。L是一個(gè)非參數(shù)假設(shè),用于衡量樣本S的似然度,是來(lái)自紋理類別還是基于預(yù)分類紋MLBPriu2/VARP,R
P,R
(12)的情況下,可以直接方式徹底掃描二維直方圖。LBPriu2有一個(gè)離散輸出值(0→P+1)P,R化,但算子的輸出值直接被累計(jì)成P+2維的直方圖。每維都能有效提供一個(gè)在紋理樣本或原型中遇到的對(duì)應(yīng)模式的概率的估計(jì)量。因?yàn)橹挥幸粋€(gè)模式小子集可以幾乎包含一個(gè)給定的模式,所以毗連的鄰域之間的空間依存關(guān)系是固有地存在于直方圖中的。方差量度VAR 有一個(gè)連續(xù)值的輸出,因此,需要特征空間的量化。這可通過(guò)在總分P,RB維。因此,直方圖的維數(shù)的刪除數(shù)值對(duì)應(yīng)組合數(shù)據(jù)的百分位100/大可能導(dǎo)致稀疏且不穩(wěn)定的直方圖。根據(jù)經(jīng)驗(yàn)方法,統(tǒng)計(jì)學(xué)文獻(xiàn)時(shí)常建議平均每維10個(gè)條目應(yīng)該是足夠的。在實(shí)驗(yàn)方面,我們?cè)O(shè)定B的數(shù)值,以便這一個(gè)條件得到滿足。多分辨率分析我們已經(jīng)描述了一般旋轉(zhuǎn)不變算子作用于P像素點(diǎn)以RPR重算子所提供的聯(lián)合信息來(lái)完成。本研究中,我們通過(guò)定義來(lái)直接實(shí)現(xiàn)多分辨率分析,聚合相異度相當(dāng)于對(duì)應(yīng)LN的對(duì)數(shù)似然和。算子定義如下:L Nn1
L(Sn,Mn) (14)Sn和Mn提取的對(duì)應(yīng)樣本和模型直方圖。這個(gè)表達(dá)式是基于G統(tǒng)計(jì)量(13)的特性的疊加,即,幾個(gè)G檢驗(yàn)結(jié)果可以歸納出個(gè)有深遠(yuǎn)意義的結(jié)果。如果X和Y是獨(dú)立隨機(jī)事件,且S ,S ,M 和M 分別為SX Y X YM的邊緣分布,則G(SXY,MXY)G(SX,MX)G(SY,MY)[5]通常,不同紋理特征之間的獨(dú)立性假設(shè)是站不住腳的。然而,由于統(tǒng)計(jì)學(xué)的偏差以及高維直方圖的計(jì)算復(fù)雜度,精確的聯(lián)合概率估計(jì)是不可行的。例如,LBPriu2,LBPriu2和8,R 16,RLBPriu2的疊加直方圖包含4680(10×18×26)個(gè)單元。為了滿足統(tǒng)計(jì)可靠性的第一法則,24,R即,平均每單元至少要有10個(gè)條目,圖像大小至少為(216+2R)(216+2R)個(gè)像素。因此,高維直方圖只有當(dāng)真實(shí)圖像大的時(shí)候才可靠,這使之變的不切實(shí)際。大的多維直方圖的計(jì)算在計(jì)算速度和內(nèi)存消耗上也是很可觀的。最近,我們?cè)诩y理分割中也成功使用了這種方法,為多分辨率分析中獨(dú)立直方圖的合并做了大量不同選項(xiàng)的比較[6]。本研究中,我們限制至多三個(gè)算子的合并。PAGEPAGE16MultiresolutionGray-ScaleandRotationInvariantTextureClassificationwithLocalBinaryPatternsAbstract:Thispaperpresentsatheoreticallyverysimple,yetefficient,multiresolutionapproachtogray-scaleandrotationinvarianttextureclassificationbasedonlocalbinarypatternsandnonparametricdiscriminationofsampleandprototypedistributions.Themethodisbasedonrecognizingthatcertainlocalbinarypatterns,termed“uniform” ,arefundamentalpropertiesoflocalimagetextureandtheiroccurrencehistogramisproventobeaverypowerfultexturefeature.Wederiveageneralizedgray-scaleandrotationinvariantoperatorpresentationallowsfordetectingthe“uniform”patternsforanyquantizationoftheangularspaceandforanyspatialresolutionandpresentsamethodforcombiningmultipleoperatorsformultiresolutionanalysis.Theproposedapproachisveryrobustintermsofgray-scalevariationssincetheoperatoris,bydefinition,invariantagainstanymonotonictransformationofthegrayscale.Anotheradvantageiscomputationalsimplicityastheoperatorcanberealizedwithafewoperationsinasmallneighborhoodandalookuptable.Excellentexperimentalresultsobtainedintrueproblemsofrotationinvariance,wheretheclassifieristrainedatoneparticularrotationangleandtestedwithsamplesfromotherrotationangles,demonstratethatgooddiscriminationcanbeachievedwiththeoccurrencestatisticsofsimplerotationinvariantlocalbinarypatterns.Theseoperatorscharacterizethespatialconfigurationoflocalimagetextureandtheperformancecanbefurtherimprovedbycombiningthemwithrotationinvariantvariancemeasuresthatcharacterizethecontrastoflocalimagetexture.Thejointdistributionsoftheseorthogonalmeasuresareshowntobeverypowerfultoolsforrotationinvarianttextureanalysis.IndexTerms:Nonparametric,textureanalysis,Outex,Brodatz,distribution,histogram,contrast.GRAYSCALEANDROTATIONINVARIANTLOCALBINARYPATTERNSWestartthederivationofourgrayscaleandrotationinvarianttextureoperatorbydefiningtextureTinalocalneighborhoodofaonochrometextureimageasthejointdistributionoftheg )g )P1Tt(gc
,g0
(1)where grayvalue gccorrespondsto the grayvalueof the center pixel of thelocalneighborhoodand
correspondtothegrayvaluesofPequallyspacedpixelsponacircleofradiusR(R>0)thatformacircularlysymmetricneighborset.If the coordinates of
are (0,0), then the coordinates of g
are given by(R
sin(2p/P),
R
cp/P))
pFig.1illustratescircularlysymmetricneighborsetsforvarious(P,R).Thegrayvaluesofneighborswhichdonotfallexactlyinthecenterofpixelsareestimatedbyinterpolation.AchievingGray-ScaleInvarianceAsthefirststeptowardgray-scaleinvariance,wesubtract,withoutlosinginformation,thegrayvalueofthecenterpixel(gc
)fromthegrayvaluesofthecircularlysymmetricneighborhoodg (p=0,……P-1),giving:P
Tt(g,g0
g,gc
g,,,g P1
g) (2)cNext,weassumethatdifferences gPfactorize(2):
g areindependentof gc
,whichallowsustoTt(gc
)t(g0
g,gc
gc
g) (3),,g P1Inpractice,anexactindependenceisnotwarranted;hence,thefactorizeddistributionisonlyanapproximationofthejointdistribution.However,wearewillingtoacceptthepossiblesmalllossininformationasitallowsustoachieveinvariancewithrespecttoshiftsingrayscale.Namely,thedistribution t(gc
)in(3)describestheoverallluminanceoftheimage,whichisunrelatedtolocalimagetextureand,consequently,doesnotprovideusefulinformationfor,g ,g P1Tt(g0
g,gc
gc
g) (4)cThisisahighlydiscriminativetextureoperator.ItrecordstheoccurrencesofvariouspatternsintheneighborhoodofeachpixelinaP-dimensionalhistogram.Forconstantregions,thedifferencesarezeroinalldirections.Onaslowlyslopededge,theoperatorrecordsthehighestdifferenceinthegradientdirectionandzerovaluesalongtheedgeand,foraspot,thedifferencesarehighinalldirections.Signeddifferencesgp-gcarenotaffectedbychangesinmeanluminance;hence,thedifferencedistributionisinvariantagainstgray-scaleshifts.Weachieveinvariancewithrespecttothescalingofthegrayscalebyconsideringjustthesigns ofthedifferencesinsteadoftheirexactvalues:Tt(s(g0
g),s(gc 1
g), s(gc
p1
g)) (5)cwhere
1,x0s(x)0,x0
(6)Byassigningabinomialfactor 2p foreachsigns(gP
g),wetransform(5)intoauniquecLBPP,R
numberthatcharacterizesthespatialstructureofthelocalimagetexture:p1LBPP,R
p0
s(gp
g)2p (7)cThenameaLocalBinaryPatternoreflectsthefunctionalityoftheoperator,i.e.,alocalneighborhoodisthresholdedatthegrayvalueofthecenterpixelintoabinarypattern. LBPP,Roperatorisbydefinitioninvariantagainstanymonotonictransformationofthegrayscale,i.e.,aslongastheorderofthegrayvaluesintheimagestaysthesame,theoutputofthe LBPP,Roperatorremainsconstant.Ifweset(P=8;R=1),weobtain LBP8,1[2].Thetwodifferencesbetween LBP8,1
,whichissimilartotheLBPoperatorweproposedand LBPare: 1)Thepixelsintheneighborsetareindexedsothattheyformacircularchainand 2)thegrayvaluesofthediagonalpixelsdeterminedbyinterpolation.Bothmodificationsarenecessarytoobtainthecircularlysymmetricneighborset,whichallowsforderivingarotationinvariantversionof LBP .P,RAchievingRotationInvarianceThe LBPP,R
operator produces 2P different output values, corresponding to the 2PdifferentbinarypatternsthatcanbeformedbythePpixelsintheneighborset.Whentheimageisrotated,thegrayvalues gP
willcorrespondinglymovealongtheperimeterofthecirclearound g.Since g isalwaysassignedtobethegrayvalueofelement(0;R)totherightof0 0g rotatingaparticularbinarypatternnaturallyresultsinadifferent LBPc P,R
value.Thisdoesnotapplytopatternscomprisingofonly0s(or1s)whichremainconstantatallrotationangles.Toremovetheeffectofrotation,i.e.,toassignauniqueidentifiertoeachrotationinvariantlocal,P,PLBPriP,R
min{ROR(LBPP,R
,i)i0,1,
(8)whereROR(x;i)performsacircularbit-wiserightshiftontheP-bitnumberxitimes.Intermsofimagepixels,(8)simplycorrespondstorotatingtheneighborsetclockwisesotimesthatamaximalnumberofthemostsignificantbits,startingfrom gP1,is0.LBPriP,R
quantifies the occurrence statistics of individual rotation invariant patternscorrespondingtocertainmicrofeaturesintheimage;hence,thepatternscanbeconsideredasfeaturedetectors.Fig.2illustratesthe36uniquerotationinvariantlocalbinarypatternsthatcanoccurinthecaseofP=8,i.e., LBPriP,R
canhave36differentvalues.Forexample,pattern#0detects bright spots, #8 dark spots and flat areas, and #4 edges. If we set R=1,LBPriP,R
correspondstothegray-scaleandrotationinvariantoperatorthatwedesignatedasLBPROTin[3].ImprovedRotationInvariancewith“Uniform” PatternsandFinerQuantizationoftheAngularSpaceOurpracticalexperience,however,hasshownthatLBPROTassuchdoesnotprovideverygooddiscrimination,aswealsoconcludedin[3].Therearetworeasons:Theoccurrencefrequenciesofthe36individualpatternsincorporatedinLBPROTvarygreatlyandthecrudequantizationoftheangularspaceat45°intervals.Wehaveobservedthatcertainlocalbinarypatternsarefundamentalpropertiesoftexture,providingthevastmajority,sometimesover90percent,ofall3×3patternspresentinobservedtextures.ThisisdemonstratedinmoredetailinSection3withstatisticsoftheimagedatausedintheexperiments.Wecallthesefundamentalpatterns“uniform”astheyhaveonethingincommon,namely,uniform circularstructurethatcontainsveryfewspatialtransitions.“Uniform”patternsareillustratedonthefirstrowofFig.2.Theyfunctionastemplatesformicrostructuressuchasbrightspot(0),flatareaordarkspot(8),andedgesofvaryingpositiveandnegativecurvature(1-7).Toformallydefinethe“uniform”patterns,weintroduceauniformitymeasureU(“pattern”),whichcorrespondstothenumberofspatialtransitions(bitwise0/1changes)inthe“pattern”.Forexample,patterns 000000002 and111111112 haveUvalueof0,whiletheothersevenpatternsinthefirstrowofFig.2haveUvalueof2asthereareexactlytwo0/1transitionsinthepattern.Similarly,theother27patternshaveUvalueofatleast4.WedesignatepatternsthathaveUvalueofatmost2as“uniform”andproposetheoperatorforgray-scaleandrotationinvarianttexturedescriptioninsteadof LBPri :P,R P1s(g g
ifU(LBP
)2LBPriu2 P0 p
P,R
(9)P,R P
otherwisewhere
U(LBPP,R
)s(g
g)s(gc
g)|P1|s(gc p1
g)s(gc
g)| (10)cSuperscriptriu2reflectstheuseofrotationinvariant"uniform"patternsthathaveUvalueofmost2.Bydefinition,exactlyP+1"uniform"binarypatternscanoccurinacircularlysymmetricneighborsetofP pixels.Equation(9)assignsauniquelabeltoeachofthemcorrespondingtothenumberofa1obitsinthepattern(0P),whilethe"nonuniform"patternsaregroupedunderthe"miscellaneous"label(P+1).InFig.2,thelabelsofthe"uniform"patternsaredenotedinsidethepatterns.Inpractice,themappingfrom LBPP,R
to LBPriu2,whichhasP+2distinctoutputP,Rvalues,isbestimplementedwithalookuptableof 2P elements.Thefinaltexturefeatureemployedintextureanalysisisthehistogramoftheoperatoroutputs(i.e.,patternlabels)accumulatedoveratexturesample.Thereasonwhythehistogramof"uniform" patterns provides better discrimination in comparison to the histogram of individualpatternscomesdowntodifferencesintheirstatisticalproperties.Therelativeproportionof"nonuniform"patternsofallpatternsaccumulatedintoahistogramissosmallthattheirprobabilitiescannotbeestimatedreliably.Inclusionoftheirnoisyestimatesinthedissimilarityanalysisofsampleandmodelhistogramswoulddeteriorateperformance.WenotedearlierthattherotationinvarianceofLBPROT(LBPri)ishamperedbythecrude458,1quantizationoftheangularspaceprovidedbytheneighborsetofeightpixels.AstraightforwardfixistousealargerPsincethequantizationoftheangularspaceisdefinedby(360°/P).However,certainconsiderationshavetobetakenintoaccountintheselectionofP.First,PandRarerelatedinthesensethatthecircularneighborhoodcorrespondingtoagivenRcontainsalimitednumberofpixels(e.g.,nineforR=1),whichintroducesanupperlimittothenumberofnonredundantsamplingpointsintheneighborhood.Second,anefficientimplementationwithalookuptableof 2P elementssetsapracticalupperlimitforP.Inthisstudy,weexplorevaluesupto24,whichrequiresalookuptableof16MBthatcanbeeasilymanagedbyamoderncomputer.RotationInvariantVarianceMeasuresoftheContrastofLocalImageTextureThe LBPriuP,R
operatorisagray-scaleinvariantmeasure,i.e.,itsoutputisnotaffectedbyanymonotonicransformationofthegrayscale.Itisanexcellentmeasureofthespatialpattern,butit,bydefinition,discardscontrast.Ifgray-scaleinvarianceisnotrequiredandwewantedtoincorporatethecontrastoflocalimagetextureaswell,wecanmeasureitwitharotationinvariantmeasureoflocalvariance:VARP,R
1P1(gP p0
)2,
1P
P1gpp0
(11)VAR
P,R
isbydefinitioninvariantagainstshiftsin grayscale.Since LBPriu2P,R
VAR
P,R
arecomplementary,theirjointdistribution LBPriu2/P,R
P,R
isexpectedtobeaverypowerfulrotationinvariantmeasureoflocalimagetexture.Notethat,eventhoughweinthisstudyrestrictourselvestousingonlyjointdistributionsof LBPriu2P,R
and
VAR
P,R
operatorsthathavethesame(P;R)values,nothingwouldpreventusfromusingjointdistributionsofoperatorscomputedatdifferentneighborhoods.NonparametricClassificationPrincipleIntheclassificationphase,weevaluatethedissimilarityofsampleandmodelhistogramsasatestofgoodness-of-fit,whichismeasuredwithanonparametricstatisticaltest.Byusinganonparametrictest,weavoidmakingany,possiblyerroneous,assumptionsaboutthefeaturedistributions.Therearemanywell-knowngoodness-of-fitstatisticssuchasthechi-squarestatisticandtheG(log-likelihoodratio)statistic[4].Inthisstudy,atestsampleSwasassignedtotheclassofthemodelMthatmaximizedthelog-likelihoodstatistic:L(S,M)b1
SlogMb b
(12)whereBisthenumberofbinsand Sb
and Mb
correspondtothesampleandmodelprobabilitiesatbinb,respectively.Equation(12)isastraightforwardsimplificationoftheG(log-likelihoodratio)statistic:G(S,M)2BSlogSb
2B[SlogS Slog
] (13)b Mb
b b b bb1wherethefirsttermoftherighthandexpressioncanbeignoredasaconstantforagivenS.LisanonparametricpseudometricthatmeasureslikelihoodsthatsampleSisfromalternativetextureclasses,basedonexactprobabilitiesoffeaturevaluesofpreclassifiedtexturemodelsM.InthecaseofthejointdistributionLBPriu2/VARP,R
P,R
(12)wasextendedinastraightforwardmannertoscanthroughthetwo-dimensionalhistograms.SampleandmodeldistributionswereobtainedbyscanningthetexturesamplesandprototypeswiththechosenoperatoranddividingthedistributionsofoperatoroutputsintohistogramshavingafixednumberofBbins.Since
riu2hasafixedsetofdiscreteoutputvalues(0 →P,RP+1),noquantizationisrequired,buttheoperatoroutputsaredirectlyaccumulatedintoahistogramofP+2bins.Eachbineffectivelyprovidesanestimateoftheprobabilityofencounteringthecorrespondingpatterninthetexturesampleorprototype.Spatialdependenciesbetweenadjacentneighborhoodsareinherentlyincorporatedinthehistogrambecauseonlyasmallsubsetofpatternscanresidenexttoagivenpattern.VariancemeasureVAR hasacontinuous-valuedoutput;hence,quantizationofitsfeatureP,Rspaceisneeded.Thiswasdonebyaddingtogetherfeaturedistributionsforeverysinglemodelimageinatotaldistribution,whichwasdividedintoBbinshavinganequalnumberofentries.Hence,thecutvaluesofthebinsofthehistogramscorrespondedtothe(100=B)percentileofthecombineddata.Derivingthecutvaluesfromthetotaldistributionandallocatingeverybinthesameamountofthecombineddataguaranteesthatthehighestresolutionofquantizationisusedwherethenumberofentriesislargestandviceversa.Thenumberofbinsusedinthequantizationofthefeaturespaceisofsomeimportanceashistogramswithatoosmallnumberofbinsfailtoprovideenoughdiscriminativeinformationaboutthedistributions.Ontheotherhand,sincethedistributionshaveafinitenumberofentries,atoolargenumberofbinsmayleadtosparseandunstablehistograms. Asaruleofthumb,statisticsliterature oftenproposesthataveragenumberof10entriesperbinshouldbesufficient.Intheexperiments,wesetthevalueofBsothatthisconditionis satisfied.MultiresolutionAnalysisWehavepresentedgeneralrotation-invariantoperatorsforcharacterizingthespatialpatternandthecontrastoflocalimagetextureusingacircularlysymmetricneighborsetofPpixelsplacedonacircleofradiusR.ByalteringPandR,wecanrealizeoperatorsforanyquantizationoftheangularspaceandforanyspatialresolution.Multiresolutionanalysiscanbeaccomplishedbycombiningtheinformationprovidedbymultipleoperatorsofvarying(P;R).Inthisstudy,weperformstraightforwardmultiresolutionanalysisbydefiningtheaggregatedissimilarityasthesumofindividuallog-likelihoodscomputedfromtheresponsesofindividualoperators.L Nn1
L(Sn,Mn) (14)wher
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年線上推廣服務(wù)合同
- 2026年建筑工程成效評(píng)估合同
- 房屋提前購(gòu)買合同(標(biāo)準(zhǔn)版)
- 2025年修復(fù)性司法服務(wù)體系建設(shè)項(xiàng)目可行性研究報(bào)告
- 2025年智能倉(cāng)儲(chǔ)系統(tǒng)方案優(yōu)化項(xiàng)目可行性研究報(bào)告
- 2025年醫(yī)藥供應(yīng)鏈數(shù)字化解決方案可行性研究報(bào)告
- 浙江擬就業(yè)協(xié)議書
- 中國(guó)駐美協(xié)議書
- 老板要寫解協(xié)議書
- 2025年智慧農(nóng)業(yè)合作社發(fā)展項(xiàng)目可行性研究報(bào)告
- 女性壓力性尿失禁-完成
- 三國(guó)志11全人物能力數(shù)值表
- 個(gè)人借條電子版模板
- 彈箭空氣動(dòng)力學(xué)智慧樹(shù)知到答案章節(jié)測(cè)試2023年南京理工大學(xué)
- 形勢(shì)與政策(吉林大學(xué))智慧樹(shù)知到答案章節(jié)測(cè)試2023年
- 2023年機(jī)械制造裝備設(shè)計(jì)大作業(yè)
- 工業(yè)加熱爐溫度控制系統(tǒng)
- 課程設(shè)計(jì)-邏輯信號(hào)電平測(cè)試器的設(shè)計(jì)
- 醫(yī)療質(zhì)量與安全管理小組架構(gòu)及職責(zé)
- 顏真卿書法欣賞課件
- DJAM碟式射流曝氣器
評(píng)論
0/150
提交評(píng)論